癌症风险评估工具:一种评估肿瘤治疗患者治愈率的新通用模型

D. Nascimento, P. Ramos, Oilson A. Gonzatto, G. G. Ferreira, Patrícia P.M. de Castro, Renan S. Barbosa, Vinicius O. Boen, Vinicius H. Valentim, Luiz G. Silva, Mariana M. Gomes, Gleice S. C. Perdoná, F. Louzada
{"title":"癌症风险评估工具:一种评估肿瘤治疗患者治愈率的新通用模型","authors":"D. Nascimento, P. Ramos, Oilson A. Gonzatto, G. G. Ferreira, Patrícia P.M. de Castro, Renan S. Barbosa, Vinicius O. Boen, Vinicius H. Valentim, Luiz G. Silva, Mariana M. Gomes, Gleice S. C. Perdoná, F. Louzada","doi":"10.1101/2020.08.27.20183285","DOIUrl":null,"url":null,"abstract":"Cure fraction is not an easy task to be calculated relating probabilistic estimations to an event. For instance, cancer patients may abandon treatment, be cured, or die due to another illness, causing limitations regarding the information about the odds of cancer cure (related to the patient follow-up) and may mislead the researcher's inference. In this paper, we overcame this limitation and proposed a risk assessment tool related to the lifetime of cancer patients to survival functions to help medical decision-making. Moreover, we proposed a new machine learning algorithm, so-called long-term generalized weighted Lindley (LGWL) distribution, solving the inferential limitation caused by the censored information. Regarding the robustness of this distribution, some mathematical properties are shown and inferential procedures discussed, under the maximum likelihood estimators' perspective. Empirical results used TCGA lung cancer data (but not limited to this cancer type) showing the competitiveness of the proposed distribution to the medical field. The cure-rate is dynamic but quantifiable. For instance, after 14 years of development/spread of lung cancer, the group of patients under the age of 70 had a cure fraction of 32%, while the group of elderly patients presented a cure fraction of 22%, whereas those estimations using the traditional (long-term) Weibull distribution is 31% and 17%. The LGWL returned closer curves to the empirical distribution, then were better adjusted to the adopted data, elucidating the importance of cure-rate fraction in survival models.","PeriodicalId":110688,"journal":{"name":"Anais do I Workshop de Matemática, Estatística e Computação Aplicadas à Indústria","volume":"25 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cancer Risk Assessment Tool: A new general model to estimate cure-rate fraction in patients under tumor therapy\",\"authors\":\"D. Nascimento, P. Ramos, Oilson A. Gonzatto, G. G. Ferreira, Patrícia P.M. de Castro, Renan S. Barbosa, Vinicius O. Boen, Vinicius H. Valentim, Luiz G. Silva, Mariana M. Gomes, Gleice S. C. Perdoná, F. Louzada\",\"doi\":\"10.1101/2020.08.27.20183285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cure fraction is not an easy task to be calculated relating probabilistic estimations to an event. For instance, cancer patients may abandon treatment, be cured, or die due to another illness, causing limitations regarding the information about the odds of cancer cure (related to the patient follow-up) and may mislead the researcher's inference. In this paper, we overcame this limitation and proposed a risk assessment tool related to the lifetime of cancer patients to survival functions to help medical decision-making. Moreover, we proposed a new machine learning algorithm, so-called long-term generalized weighted Lindley (LGWL) distribution, solving the inferential limitation caused by the censored information. Regarding the robustness of this distribution, some mathematical properties are shown and inferential procedures discussed, under the maximum likelihood estimators' perspective. Empirical results used TCGA lung cancer data (but not limited to this cancer type) showing the competitiveness of the proposed distribution to the medical field. The cure-rate is dynamic but quantifiable. For instance, after 14 years of development/spread of lung cancer, the group of patients under the age of 70 had a cure fraction of 32%, while the group of elderly patients presented a cure fraction of 22%, whereas those estimations using the traditional (long-term) Weibull distribution is 31% and 17%. The LGWL returned closer curves to the empirical distribution, then were better adjusted to the adopted data, elucidating the importance of cure-rate fraction in survival models.\",\"PeriodicalId\":110688,\"journal\":{\"name\":\"Anais do I Workshop de Matemática, Estatística e Computação Aplicadas à Indústria\",\"volume\":\"25 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do I Workshop de Matemática, Estatística e Computação Aplicadas à Indústria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2020.08.27.20183285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do I Workshop de Matemática, Estatística e Computação Aplicadas à Indústria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2020.08.27.20183285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

治愈率不是一项容易计算的任务,将概率估计与事件联系起来。例如,癌症患者可能放弃治疗,被治愈,或死于另一种疾病,导致有关癌症治愈几率的信息有限(与患者随访有关),并可能误导研究人员的推断。在本文中,我们克服了这一局限,提出了一种与癌症患者一生对生存功能相关的风险评估工具,以帮助医疗决策。此外,我们提出了一种新的机器学习算法,即长期广义加权林德利(LGWL)分布,解决了因删减信息而导致的推理限制。对于该分布的鲁棒性,给出了一些数学性质,并讨论了在极大似然估计量下的推理过程。使用TCGA肺癌数据(但不限于这种癌症类型)的实证结果显示了所提出的分布在医疗领域的竞争力。治愈率是动态的,但可以量化。例如,在肺癌发生/扩散14年后,70岁以下患者组的治愈率为32%,而老年患者组的治愈率为22%,而使用传统(长期)威布尔分布的估计分别为31%和17%。LGWL返回更接近经验分布的曲线,然后更好地调整到所采用的数据,阐明了治愈率分数在生存模型中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cancer Risk Assessment Tool: A new general model to estimate cure-rate fraction in patients under tumor therapy
Cure fraction is not an easy task to be calculated relating probabilistic estimations to an event. For instance, cancer patients may abandon treatment, be cured, or die due to another illness, causing limitations regarding the information about the odds of cancer cure (related to the patient follow-up) and may mislead the researcher's inference. In this paper, we overcame this limitation and proposed a risk assessment tool related to the lifetime of cancer patients to survival functions to help medical decision-making. Moreover, we proposed a new machine learning algorithm, so-called long-term generalized weighted Lindley (LGWL) distribution, solving the inferential limitation caused by the censored information. Regarding the robustness of this distribution, some mathematical properties are shown and inferential procedures discussed, under the maximum likelihood estimators' perspective. Empirical results used TCGA lung cancer data (but not limited to this cancer type) showing the competitiveness of the proposed distribution to the medical field. The cure-rate is dynamic but quantifiable. For instance, after 14 years of development/spread of lung cancer, the group of patients under the age of 70 had a cure fraction of 32%, while the group of elderly patients presented a cure fraction of 22%, whereas those estimations using the traditional (long-term) Weibull distribution is 31% and 17%. The LGWL returned closer curves to the empirical distribution, then were better adjusted to the adopted data, elucidating the importance of cure-rate fraction in survival models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信