{"title":"树莓震动仪器提供了英国康沃尔联合唐斯深层地热发电项目诱发地震活动性的初步地面运动评估","authors":"J. Holmgren, M. Werner","doi":"10.1785/0320210010","DOIUrl":null,"url":null,"abstract":"\n Raspberry Shake (RS) seismographs offer the potential for affordable and citizen-led seismic monitoring in areas with few publicly available seismometers, especially in previously quiescent regions experiencing induced seismicity. However, their scientific and regulatory potential remains largely untested. We examine the ground motions recorded by 11 RS and one broadband station within 15 km of the United Downs Deep Geothermal Power (UDDGP) project in Cornwall, United Kingdom, to evaluate the RS network’s suitability to provide an initial ground-motion assessment of the region. To date, the British Geological Survey (BGS) has reported 232 induced events originating at UDDGP since flow testing began in summer 2020, with two events exceeding local magnitude (ML) 1.5. Although the RS accelerometers are too noisy for UDDGP’s microseismic events, the vertical geophones are useful. Peak ground velocity observations are consistent with relevant ground-motion models, whereas peak ground acceleration (PGA) values are greater than predicted. Regional trends in the PGA levels are likely caused by path effects. Finally, RS estimates of ML are similar to those reported by the BGS. For sparse national seismic networks, RS stations can enable a preliminary evaluation of seismic events and their ground motions.","PeriodicalId":273018,"journal":{"name":"The Seismic Record","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Raspberry Shake Instruments Provide Initial Ground-Motion Assessment of the Induced Seismicity at the United Downs Deep Geothermal Power Project in Cornwall, United Kingdom\",\"authors\":\"J. Holmgren, M. Werner\",\"doi\":\"10.1785/0320210010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Raspberry Shake (RS) seismographs offer the potential for affordable and citizen-led seismic monitoring in areas with few publicly available seismometers, especially in previously quiescent regions experiencing induced seismicity. However, their scientific and regulatory potential remains largely untested. We examine the ground motions recorded by 11 RS and one broadband station within 15 km of the United Downs Deep Geothermal Power (UDDGP) project in Cornwall, United Kingdom, to evaluate the RS network’s suitability to provide an initial ground-motion assessment of the region. To date, the British Geological Survey (BGS) has reported 232 induced events originating at UDDGP since flow testing began in summer 2020, with two events exceeding local magnitude (ML) 1.5. Although the RS accelerometers are too noisy for UDDGP’s microseismic events, the vertical geophones are useful. Peak ground velocity observations are consistent with relevant ground-motion models, whereas peak ground acceleration (PGA) values are greater than predicted. Regional trends in the PGA levels are likely caused by path effects. Finally, RS estimates of ML are similar to those reported by the BGS. For sparse national seismic networks, RS stations can enable a preliminary evaluation of seismic events and their ground motions.\",\"PeriodicalId\":273018,\"journal\":{\"name\":\"The Seismic Record\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Seismic Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1785/0320210010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seismic Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0320210010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Raspberry Shake Instruments Provide Initial Ground-Motion Assessment of the Induced Seismicity at the United Downs Deep Geothermal Power Project in Cornwall, United Kingdom
Raspberry Shake (RS) seismographs offer the potential for affordable and citizen-led seismic monitoring in areas with few publicly available seismometers, especially in previously quiescent regions experiencing induced seismicity. However, their scientific and regulatory potential remains largely untested. We examine the ground motions recorded by 11 RS and one broadband station within 15 km of the United Downs Deep Geothermal Power (UDDGP) project in Cornwall, United Kingdom, to evaluate the RS network’s suitability to provide an initial ground-motion assessment of the region. To date, the British Geological Survey (BGS) has reported 232 induced events originating at UDDGP since flow testing began in summer 2020, with two events exceeding local magnitude (ML) 1.5. Although the RS accelerometers are too noisy for UDDGP’s microseismic events, the vertical geophones are useful. Peak ground velocity observations are consistent with relevant ground-motion models, whereas peak ground acceleration (PGA) values are greater than predicted. Regional trends in the PGA levels are likely caused by path effects. Finally, RS estimates of ML are similar to those reported by the BGS. For sparse national seismic networks, RS stations can enable a preliminary evaluation of seismic events and their ground motions.