Z. Qi, Hang Li, S.X.-D. Tan, Yici Cai, Xianlong Hong
{"title":"片上解耦电容序列线性规划","authors":"Z. Qi, Hang Li, S.X.-D. Tan, Yici Cai, Xianlong Hong","doi":"10.1109/ICASIC.2005.1611252","DOIUrl":null,"url":null,"abstract":"Excessive power supply noise increases propagation delay of switching gates and reduces noise margin of the circuit. Adding on-chip decoupling capacitors (decaps) is an effective way to reduce voltage noise in a on-chip power delivery system. In this paper, we propose an efficient and novel algorithm to allocate decaps in an area efficient way. The new algorithm applies the sequence of linear programming based approach to searching the minimum decap area to reduce voltage drop below user specified threshold. We show existing sensitivity based decap allocation algorithms tend to over estimate the decap areas due to nonlinear sensitivity dependence on decap values. Experimental results show that the proposed algorithm uses significantly less decap area than the existing conjugate gradient based approach but with similar CPU runtimes","PeriodicalId":431034,"journal":{"name":"2005 6th International Conference on ASIC","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On-chip decoupling capacitor budgeting by sequence of linear programming\",\"authors\":\"Z. Qi, Hang Li, S.X.-D. Tan, Yici Cai, Xianlong Hong\",\"doi\":\"10.1109/ICASIC.2005.1611252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Excessive power supply noise increases propagation delay of switching gates and reduces noise margin of the circuit. Adding on-chip decoupling capacitors (decaps) is an effective way to reduce voltage noise in a on-chip power delivery system. In this paper, we propose an efficient and novel algorithm to allocate decaps in an area efficient way. The new algorithm applies the sequence of linear programming based approach to searching the minimum decap area to reduce voltage drop below user specified threshold. We show existing sensitivity based decap allocation algorithms tend to over estimate the decap areas due to nonlinear sensitivity dependence on decap values. Experimental results show that the proposed algorithm uses significantly less decap area than the existing conjugate gradient based approach but with similar CPU runtimes\",\"PeriodicalId\":431034,\"journal\":{\"name\":\"2005 6th International Conference on ASIC\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 6th International Conference on ASIC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASIC.2005.1611252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 6th International Conference on ASIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASIC.2005.1611252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On-chip decoupling capacitor budgeting by sequence of linear programming
Excessive power supply noise increases propagation delay of switching gates and reduces noise margin of the circuit. Adding on-chip decoupling capacitors (decaps) is an effective way to reduce voltage noise in a on-chip power delivery system. In this paper, we propose an efficient and novel algorithm to allocate decaps in an area efficient way. The new algorithm applies the sequence of linear programming based approach to searching the minimum decap area to reduce voltage drop below user specified threshold. We show existing sensitivity based decap allocation algorithms tend to over estimate the decap areas due to nonlinear sensitivity dependence on decap values. Experimental results show that the proposed algorithm uses significantly less decap area than the existing conjugate gradient based approach but with similar CPU runtimes