用分子动力学模拟方法预测含有单钼空位缺陷的缺陷单层MoS2的力学性能

Minglin Li, Yaling Wan, Weidong Wang
{"title":"用分子动力学模拟方法预测含有单钼空位缺陷的缺陷单层MoS2的力学性能","authors":"Minglin Li, Yaling Wan, Weidong Wang","doi":"10.1109/NANO.2017.8117324","DOIUrl":null,"url":null,"abstract":"It is revealed by recent experimental and theoretical nanoindentation studies that the low concentration of monovacancy produces an abnormal noticeable stiffening effect on graphene sheets, which depending on the defect type. As for graphene-like quasi-two dimensional (2D) nanomaterials, the single-layer molybdenum disulfide (SLMoS2) has intrinsic structural defects that are distinct to graphene. Therefore, it is intriguing to investigate if any kind of defects will lead to such unique effect on the mechanical properties of SLMoS2, including the elasticity and strength. Following our preliminary studies on the VMoS3 point defect, herein, we perform molecular dynamics simulations to look into the effect of the low concentration of single molybdenum vacancy defects on the mechanical properties of SLMoS2, under uniaxial tensile tests. The defect fractions of the single Mo vacancy varying from 0.1% to 1.0% are considered in our works, together with the random and regular vacancy distributions. Single molybdenum vacancy defects are found, as common intuition would suggest, to reduce the mechanical properties of SLMoS2, including the elastic modulus and tensile strength. The effect of chirality on the mechanical properties of the SLMoS2 is also discussed in the present work.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Prediction of mechanical properties for defective monolayer MoS2 with single molybdenum vacancy defects using molecular dynamics simulations\",\"authors\":\"Minglin Li, Yaling Wan, Weidong Wang\",\"doi\":\"10.1109/NANO.2017.8117324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is revealed by recent experimental and theoretical nanoindentation studies that the low concentration of monovacancy produces an abnormal noticeable stiffening effect on graphene sheets, which depending on the defect type. As for graphene-like quasi-two dimensional (2D) nanomaterials, the single-layer molybdenum disulfide (SLMoS2) has intrinsic structural defects that are distinct to graphene. Therefore, it is intriguing to investigate if any kind of defects will lead to such unique effect on the mechanical properties of SLMoS2, including the elasticity and strength. Following our preliminary studies on the VMoS3 point defect, herein, we perform molecular dynamics simulations to look into the effect of the low concentration of single molybdenum vacancy defects on the mechanical properties of SLMoS2, under uniaxial tensile tests. The defect fractions of the single Mo vacancy varying from 0.1% to 1.0% are considered in our works, together with the random and regular vacancy distributions. Single molybdenum vacancy defects are found, as common intuition would suggest, to reduce the mechanical properties of SLMoS2, including the elastic modulus and tensile strength. The effect of chirality on the mechanical properties of the SLMoS2 is also discussed in the present work.\",\"PeriodicalId\":292399,\"journal\":{\"name\":\"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO.2017.8117324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2017.8117324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

最近的实验和理论纳米压痕研究表明,低浓度的单空位会对石墨烯片产生异常明显的硬化效应,这取决于缺陷类型。对于类石墨烯类准二维(2D)纳米材料,单层二硫化钼(SLMoS2)具有与石墨烯不同的固有结构缺陷。因此,是否有某种缺陷会对SLMoS2的弹性和强度等力学性能产生如此独特的影响,是一个值得研究的问题。在我们对VMoS3点缺陷进行初步研究的基础上,我们进行了分子动力学模拟,研究了低浓度的单钼空位缺陷对SLMoS2单轴拉伸力学性能的影响。在我们的工作中考虑了单个Mo空位的缺陷分数在0.1% ~ 1.0%之间,以及随机和规则的空位分布。单钼空位缺陷会降低SLMoS2的力学性能,包括弹性模量和抗拉强度。本文还讨论了手性对SLMoS2机械性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of mechanical properties for defective monolayer MoS2 with single molybdenum vacancy defects using molecular dynamics simulations
It is revealed by recent experimental and theoretical nanoindentation studies that the low concentration of monovacancy produces an abnormal noticeable stiffening effect on graphene sheets, which depending on the defect type. As for graphene-like quasi-two dimensional (2D) nanomaterials, the single-layer molybdenum disulfide (SLMoS2) has intrinsic structural defects that are distinct to graphene. Therefore, it is intriguing to investigate if any kind of defects will lead to such unique effect on the mechanical properties of SLMoS2, including the elasticity and strength. Following our preliminary studies on the VMoS3 point defect, herein, we perform molecular dynamics simulations to look into the effect of the low concentration of single molybdenum vacancy defects on the mechanical properties of SLMoS2, under uniaxial tensile tests. The defect fractions of the single Mo vacancy varying from 0.1% to 1.0% are considered in our works, together with the random and regular vacancy distributions. Single molybdenum vacancy defects are found, as common intuition would suggest, to reduce the mechanical properties of SLMoS2, including the elastic modulus and tensile strength. The effect of chirality on the mechanical properties of the SLMoS2 is also discussed in the present work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信