{"title":"安全信息流分析的权限依赖型系统","authors":"Hongxu Chen, Alwen Tiu, Zhiwu Xu, Yang Liu","doi":"10.1109/CSF.2018.00023","DOIUrl":null,"url":null,"abstract":"We introduce a novel type system for enforcing secure information flow in an imperative language. Our work is motivated by the problem of statically checking potential information leakage in Android applications. To this end, we design a lightweight type system featuring Android permission model, where the permissions are statically assigned to applications and are used to enforce access control in the applications. We take inspiration from a type system by Banerjee and Naumann to allow security types to be dependent on the permissions of the applications. A novel feature of our type system is a typing rule for conditional branching induced by permission testing, which introduces a merging operator on security types, allowing more precise security policies to be enforced. The soundness of our type system is proved with respect to non-interference. In addition, a type inference algorithm is presented for the underlying security type system, by reducing the inference problem to a constraint solving problem in the lattice of security types.","PeriodicalId":417032,"journal":{"name":"2018 IEEE 31st Computer Security Foundations Symposium (CSF)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A Permission-Dependent Type System for Secure Information Flow Analysis\",\"authors\":\"Hongxu Chen, Alwen Tiu, Zhiwu Xu, Yang Liu\",\"doi\":\"10.1109/CSF.2018.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a novel type system for enforcing secure information flow in an imperative language. Our work is motivated by the problem of statically checking potential information leakage in Android applications. To this end, we design a lightweight type system featuring Android permission model, where the permissions are statically assigned to applications and are used to enforce access control in the applications. We take inspiration from a type system by Banerjee and Naumann to allow security types to be dependent on the permissions of the applications. A novel feature of our type system is a typing rule for conditional branching induced by permission testing, which introduces a merging operator on security types, allowing more precise security policies to be enforced. The soundness of our type system is proved with respect to non-interference. In addition, a type inference algorithm is presented for the underlying security type system, by reducing the inference problem to a constraint solving problem in the lattice of security types.\",\"PeriodicalId\":417032,\"journal\":{\"name\":\"2018 IEEE 31st Computer Security Foundations Symposium (CSF)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 31st Computer Security Foundations Symposium (CSF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSF.2018.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 31st Computer Security Foundations Symposium (CSF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2018.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Permission-Dependent Type System for Secure Information Flow Analysis
We introduce a novel type system for enforcing secure information flow in an imperative language. Our work is motivated by the problem of statically checking potential information leakage in Android applications. To this end, we design a lightweight type system featuring Android permission model, where the permissions are statically assigned to applications and are used to enforce access control in the applications. We take inspiration from a type system by Banerjee and Naumann to allow security types to be dependent on the permissions of the applications. A novel feature of our type system is a typing rule for conditional branching induced by permission testing, which introduces a merging operator on security types, allowing more precise security policies to be enforced. The soundness of our type system is proved with respect to non-interference. In addition, a type inference algorithm is presented for the underlying security type system, by reducing the inference problem to a constraint solving problem in the lattice of security types.