Asmae El Mejdoubi, H. Gualous, H. Chaoui, G. Alcicek
{"title":"车用锂离子电池日历老化实验研究","authors":"Asmae El Mejdoubi, H. Gualous, H. Chaoui, G. Alcicek","doi":"10.1109/EMCT.2017.8090361","DOIUrl":null,"url":null,"abstract":"The main challenge with lithium-ion batteries in vehicular applications is aging. It is known that the battery aging is sensitive to various factors such as current, temperature and depth of discharge. These elements have a considerable impact on the loss of the battery's capacity, as well as on the increase of the internal resistance. In this article, we present an analysis of the aging of lithium-ion batteries in order to predict their failures. The comprehension of aging can retroact on the operating conditions in order to improve reliability. Thus, the work carried out involves the experimental analysis of a LiFePO4 battery's calendar aging under different discharge currents and temperatures.","PeriodicalId":104929,"journal":{"name":"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Experimental investigation of calendar aging of lithium-ion batteries for vehicular applications\",\"authors\":\"Asmae El Mejdoubi, H. Gualous, H. Chaoui, G. Alcicek\",\"doi\":\"10.1109/EMCT.2017.8090361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main challenge with lithium-ion batteries in vehicular applications is aging. It is known that the battery aging is sensitive to various factors such as current, temperature and depth of discharge. These elements have a considerable impact on the loss of the battery's capacity, as well as on the increase of the internal resistance. In this article, we present an analysis of the aging of lithium-ion batteries in order to predict their failures. The comprehension of aging can retroact on the operating conditions in order to improve reliability. Thus, the work carried out involves the experimental analysis of a LiFePO4 battery's calendar aging under different discharge currents and temperatures.\",\"PeriodicalId\":104929,\"journal\":{\"name\":\"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMCT.2017.8090361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCT.2017.8090361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental investigation of calendar aging of lithium-ion batteries for vehicular applications
The main challenge with lithium-ion batteries in vehicular applications is aging. It is known that the battery aging is sensitive to various factors such as current, temperature and depth of discharge. These elements have a considerable impact on the loss of the battery's capacity, as well as on the increase of the internal resistance. In this article, we present an analysis of the aging of lithium-ion batteries in order to predict their failures. The comprehension of aging can retroact on the operating conditions in order to improve reliability. Thus, the work carried out involves the experimental analysis of a LiFePO4 battery's calendar aging under different discharge currents and temperatures.