{"title":"具有768个独立可控形状记忆聚合物单元的柔性触觉显示器","authors":"N. Besse, J. Zárate, S. Rosset, H. Shea","doi":"10.1109/TRANSDUCERS.2017.7994054","DOIUrl":null,"url":null,"abstract":"We report the first high-resolution flexible haptic display with 768 (32×24) individually addressable taxels (tactile pixels) designed for wearables and virtual reality (VR) applications. The device integrates a thin Shape Memory Polymer (SMP) membrane with a matrix of compliant carbon-silicone composite heaters, a 4-layer flexible PCB and a flexible fluidic chamber. The actuator yield is 99 %, the taxel pitch is 4 mm and the average displacement is 275 μm with a 225 mN holding force, allowing easy discrimination using the sense of fine touch. One line can be reconfigured and latched in 2.5 s; the entire array can be refreshed in under 1 min 30 s with our current drive circuit. The bistable nature of SMPs enables selective and independent actuator motion by judiciously synchronizing their local Joule heating with a global external pressure supply.","PeriodicalId":174774,"journal":{"name":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Flexible haptic display with 768 independently controllable shape memory polymers taxels\",\"authors\":\"N. Besse, J. Zárate, S. Rosset, H. Shea\",\"doi\":\"10.1109/TRANSDUCERS.2017.7994054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the first high-resolution flexible haptic display with 768 (32×24) individually addressable taxels (tactile pixels) designed for wearables and virtual reality (VR) applications. The device integrates a thin Shape Memory Polymer (SMP) membrane with a matrix of compliant carbon-silicone composite heaters, a 4-layer flexible PCB and a flexible fluidic chamber. The actuator yield is 99 %, the taxel pitch is 4 mm and the average displacement is 275 μm with a 225 mN holding force, allowing easy discrimination using the sense of fine touch. One line can be reconfigured and latched in 2.5 s; the entire array can be refreshed in under 1 min 30 s with our current drive circuit. The bistable nature of SMPs enables selective and independent actuator motion by judiciously synchronizing their local Joule heating with a global external pressure supply.\",\"PeriodicalId\":174774,\"journal\":{\"name\":\"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRANSDUCERS.2017.7994054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2017.7994054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We report the first high-resolution flexible haptic display with 768 (32×24) individually addressable taxels (tactile pixels) designed for wearables and virtual reality (VR) applications. The device integrates a thin Shape Memory Polymer (SMP) membrane with a matrix of compliant carbon-silicone composite heaters, a 4-layer flexible PCB and a flexible fluidic chamber. The actuator yield is 99 %, the taxel pitch is 4 mm and the average displacement is 275 μm with a 225 mN holding force, allowing easy discrimination using the sense of fine touch. One line can be reconfigured and latched in 2.5 s; the entire array can be refreshed in under 1 min 30 s with our current drive circuit. The bistable nature of SMPs enables selective and independent actuator motion by judiciously synchronizing their local Joule heating with a global external pressure supply.