复杂:一个竞争的原对偶拉格朗日优化全局布局

Myung-Chul Kim, I. Markov
{"title":"复杂:一个竞争的原对偶拉格朗日优化全局布局","authors":"Myung-Chul Kim, I. Markov","doi":"10.1145/2228360.2228496","DOIUrl":null,"url":null,"abstract":"We develop a projected-subgradient primal-dual Lagrange optimization for global placement, that can be instantiated with a variety of interconnect models. It decomposes the original non-convex problem into“more convex”sub-problems. It generalizes the recent SimPL, SimPLR and Ripple algorithms and extends them. Empirically, ComPLx outperforms all published placers in runtime and performance on ISPD 2005 and 2006 benchmarks.","PeriodicalId":263599,"journal":{"name":"DAC Design Automation Conference 2012","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"ComPLx: A competitive primal-dual Lagrange optimization for global placement\",\"authors\":\"Myung-Chul Kim, I. Markov\",\"doi\":\"10.1145/2228360.2228496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a projected-subgradient primal-dual Lagrange optimization for global placement, that can be instantiated with a variety of interconnect models. It decomposes the original non-convex problem into“more convex”sub-problems. It generalizes the recent SimPL, SimPLR and Ripple algorithms and extends them. Empirically, ComPLx outperforms all published placers in runtime and performance on ISPD 2005 and 2006 benchmarks.\",\"PeriodicalId\":263599,\"journal\":{\"name\":\"DAC Design Automation Conference 2012\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DAC Design Automation Conference 2012\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2228360.2228496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAC Design Automation Conference 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2228360.2228496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

我们开发了一个投影-亚梯度原始-对偶拉格朗日优化全局布局,它可以用各种互连模型实例化。它将原非凸问题分解为“多凸”子问题。它对最近的SimPL、SimPLR和Ripple算法进行了推广和扩展。根据经验,在ISPD 2005和2006基准测试中,complex在运行时间和性能方面优于所有已发布的placers。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ComPLx: A competitive primal-dual Lagrange optimization for global placement
We develop a projected-subgradient primal-dual Lagrange optimization for global placement, that can be instantiated with a variety of interconnect models. It decomposes the original non-convex problem into“more convex”sub-problems. It generalizes the recent SimPL, SimPLR and Ripple algorithms and extends them. Empirically, ComPLx outperforms all published placers in runtime and performance on ISPD 2005 and 2006 benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信