一种高性能、密度均衡的三重模式布局分解器

Bei Yu, Yen-Hung Lin, Gerard Luk-Pat, Duo Ding, K. Lucas, D. Pan
{"title":"一种高性能、密度均衡的三重模式布局分解器","authors":"Bei Yu, Yen-Hung Lin, Gerard Luk-Pat, Duo Ding, K. Lucas, D. Pan","doi":"10.1109/ICCAD.2013.6691114","DOIUrl":null,"url":null,"abstract":"Triple patterning lithography (TPL) has received more and more attentions from industry as one of the leading candidate for 14nm/11nm nodes. In this paper, we propose a high performance layout decomposer for TPL. Density balancing is seamlessly integrated into all key steps in our TPL layout decomposition, including density-balanced semi-definite programming (SDP), density-based mapping, and density-balanced graph simplification. Our new TPL decomposer can obtain high performance even compared to previous state-of-the-art layout decomposers which are not balanced-density aware, e.g., by Yu et al. (ICCAD'11), Fang et al. (DAC'12), and Kuang et al. (DAC'13). Furthermore, the balanced-density version of our decomposer can provide more balanced density which leads to less edge placement error (EPE), while the conflict and stitch numbers are still very comparable to our non-balanced-density baseline.","PeriodicalId":278154,"journal":{"name":"2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"A high-performance triple patterning layout decomposer with balanced density\",\"authors\":\"Bei Yu, Yen-Hung Lin, Gerard Luk-Pat, Duo Ding, K. Lucas, D. Pan\",\"doi\":\"10.1109/ICCAD.2013.6691114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Triple patterning lithography (TPL) has received more and more attentions from industry as one of the leading candidate for 14nm/11nm nodes. In this paper, we propose a high performance layout decomposer for TPL. Density balancing is seamlessly integrated into all key steps in our TPL layout decomposition, including density-balanced semi-definite programming (SDP), density-based mapping, and density-balanced graph simplification. Our new TPL decomposer can obtain high performance even compared to previous state-of-the-art layout decomposers which are not balanced-density aware, e.g., by Yu et al. (ICCAD'11), Fang et al. (DAC'12), and Kuang et al. (DAC'13). Furthermore, the balanced-density version of our decomposer can provide more balanced density which leads to less edge placement error (EPE), while the conflict and stitch numbers are still very comparable to our non-balanced-density baseline.\",\"PeriodicalId\":278154,\"journal\":{\"name\":\"2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2013.6691114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2013.6691114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

三重模式光刻技术(TPL)作为14nm/11nm节点的主要候选技术之一,越来越受到业界的关注。本文提出了一种高性能的TPL布局分配器。密度平衡无缝集成到TPL布局分解的所有关键步骤中,包括密度平衡半确定规划(SDP),基于密度的映射和密度平衡图简化。我们的新型TPL分解器即使与以前最先进的布局分解器相比,也可以获得高性能,这些分解器不具有平衡密度意识,例如Yu等人(ICCAD'11), Fang等人(DAC'12)和Kuang等人(DAC'13)。此外,我们的分解器的平衡密度版本可以提供更平衡的密度,从而导致更少的边缘放置误差(EPE),而冲突和针数仍然与我们的非平衡密度基线非常相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A high-performance triple patterning layout decomposer with balanced density
Triple patterning lithography (TPL) has received more and more attentions from industry as one of the leading candidate for 14nm/11nm nodes. In this paper, we propose a high performance layout decomposer for TPL. Density balancing is seamlessly integrated into all key steps in our TPL layout decomposition, including density-balanced semi-definite programming (SDP), density-based mapping, and density-balanced graph simplification. Our new TPL decomposer can obtain high performance even compared to previous state-of-the-art layout decomposers which are not balanced-density aware, e.g., by Yu et al. (ICCAD'11), Fang et al. (DAC'12), and Kuang et al. (DAC'13). Furthermore, the balanced-density version of our decomposer can provide more balanced density which leads to less edge placement error (EPE), while the conflict and stitch numbers are still very comparable to our non-balanced-density baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信