Z. Qin, Yao Xu, Xiaokang Shu, Lei Hua, X. Sheng, Xiangyang Zhu
{"title":"eConHand:一种用于中风康复的可穿戴脑机接口系统","authors":"Z. Qin, Yao Xu, Xiaokang Shu, Lei Hua, X. Sheng, Xiangyang Zhu","doi":"10.1109/NER.2019.8716940","DOIUrl":null,"url":null,"abstract":"Brain-Computer Interface (BCI) combined with assistive robots has been developed as a promising method for stroke rehabilitation. However, most of the current studies are based on complex system setup, expensive and bulky devices. In this work, we designed a wearable Electroencephalography(EEG)-based BCI system for hand function rehabilitation of the stroke. The system consists of a customized EEG cap, a small-sized commercial amplifer and a lightweight hand exoskeleton. In addition, visualized interface was designed for easy use. Six healthy subjects and two stroke patients were recruited to validate the safety and effectiveness of our proposed system. Up to 79.38% averaged online BCI classification accuracy was achieved. This study is a proof of concept, suggesting potential clinical applications in outpatient environments.","PeriodicalId":356177,"journal":{"name":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"eConHand: A Wearable Brain-Computer Interface System for Stroke Rehabilitation\",\"authors\":\"Z. Qin, Yao Xu, Xiaokang Shu, Lei Hua, X. Sheng, Xiangyang Zhu\",\"doi\":\"10.1109/NER.2019.8716940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-Computer Interface (BCI) combined with assistive robots has been developed as a promising method for stroke rehabilitation. However, most of the current studies are based on complex system setup, expensive and bulky devices. In this work, we designed a wearable Electroencephalography(EEG)-based BCI system for hand function rehabilitation of the stroke. The system consists of a customized EEG cap, a small-sized commercial amplifer and a lightweight hand exoskeleton. In addition, visualized interface was designed for easy use. Six healthy subjects and two stroke patients were recruited to validate the safety and effectiveness of our proposed system. Up to 79.38% averaged online BCI classification accuracy was achieved. This study is a proof of concept, suggesting potential clinical applications in outpatient environments.\",\"PeriodicalId\":356177,\"journal\":{\"name\":\"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2019.8716940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2019.8716940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
eConHand: A Wearable Brain-Computer Interface System for Stroke Rehabilitation
Brain-Computer Interface (BCI) combined with assistive robots has been developed as a promising method for stroke rehabilitation. However, most of the current studies are based on complex system setup, expensive and bulky devices. In this work, we designed a wearable Electroencephalography(EEG)-based BCI system for hand function rehabilitation of the stroke. The system consists of a customized EEG cap, a small-sized commercial amplifer and a lightweight hand exoskeleton. In addition, visualized interface was designed for easy use. Six healthy subjects and two stroke patients were recruited to validate the safety and effectiveness of our proposed system. Up to 79.38% averaged online BCI classification accuracy was achieved. This study is a proof of concept, suggesting potential clinical applications in outpatient environments.