T. Sakurai, K. Sawada, K. Nogami, T. Wada, M. Isobe, M. Kakumu, S. Morita, S. Yokogawa, M. Kinugawa, T. Asami, K. Hashimoto, J. Matsunaga, H. Nozawa, T. Iizuka
{"title":"1Mb的SRAM","authors":"T. Sakurai, K. Sawada, K. Nogami, T. Wada, M. Isobe, M. Kakumu, S. Morita, S. Yokogawa, M. Kinugawa, T. Asami, K. Hashimoto, J. Matsunaga, H. Nozawa, T. Iizuka","doi":"10.1109/ISSCC.1986.1156930","DOIUrl":null,"url":null,"abstract":"Suppressed VLSI with Submicron Geometry”, ISSCC DIGEST ’Sakurai, T., Kakumu, M . and Iizuka, T., “Hot-Carrier O F T E C H N I C A L P A P E R S , p. 272-273; Feb., 1985. “HotJ S S C ; to he published. Carrier Generation in Submicron VLSI Environment”, IEEE Insertion (NOEMI) technology5 is applied selectively to bootstraped nodes to endow hot-carrier resistancy to the circuits. N-channel memory cells are embedded in a P-well for protection from the minority carrier injection from I/O pins and alpha-particle induced electrons. Yo substrate bias is applied to reduce the standby current. Process related parameters are listed in Table 1. A double-level poly-Si and double level A1 process has been employed for circuit speed. The cell capacitor is planar and the design rule is 1.2pm. A microphotograph of the chip is shown in Figure 4. Figure 5 demonstrates a typical address access time of 62ns. The slower access is the worst case access time; Le., refresh operation taking place in advance of the normal access. The faster access is without refresh. This measurement is carried out by a test enable pin that affords control of the refresh-request signal externally. Since the access time without refresh is 48ns, the access time overhead by the background refresh is 29%. Electron beam tested internal waveforms are also shown in Figure 5. Quick switch from refresh to normal operation can be achieved by the dual bootstrap system, where one system is precharged when the other one is in operation. The pin configuration is shown in Figure 6. SRAMs. The SRAM is believed to be a promising substitute for large-capacity Acknowledgments The authors wish to thank S. Fujii, S. Saito, K. Natori, T. Ohtani, K. Taniguchi, Y. Nishi and K. Shimuzu for encouragement and discussions. Theyalso thank Y. Ito, K. Sat0 and K. Matsuda for support. Technology Twin well CMOS Layers Double poly-Si and double A1 Gate length l .op(NMOS), 1.2puPMOS) Junction depth 0.20,u(N+), 0.35p(Pt) Cap. oxide thickness l0nm Gate oxide thickn ss 20nm Poly-Si (WidthlSpace) 1.0pm / 1.4pm 1 s t AI (WidthlSpace) 1.3pm / 1.5pm Contact hole 1.lpm / 1.4pm 2nd Al (WidthlSpace) 1.8pm / 1.9pm Via hole 1.8pm / 2.0pm TABLE 1-Process parameters.","PeriodicalId":440688,"journal":{"name":"1986 IEEE International Solid-State Circuits Conference. Digest of Technical Papers","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A 1Mb virtually SRAM\",\"authors\":\"T. Sakurai, K. Sawada, K. Nogami, T. Wada, M. Isobe, M. Kakumu, S. Morita, S. Yokogawa, M. Kinugawa, T. Asami, K. Hashimoto, J. Matsunaga, H. Nozawa, T. Iizuka\",\"doi\":\"10.1109/ISSCC.1986.1156930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppressed VLSI with Submicron Geometry”, ISSCC DIGEST ’Sakurai, T., Kakumu, M . and Iizuka, T., “Hot-Carrier O F T E C H N I C A L P A P E R S , p. 272-273; Feb., 1985. “HotJ S S C ; to he published. Carrier Generation in Submicron VLSI Environment”, IEEE Insertion (NOEMI) technology5 is applied selectively to bootstraped nodes to endow hot-carrier resistancy to the circuits. N-channel memory cells are embedded in a P-well for protection from the minority carrier injection from I/O pins and alpha-particle induced electrons. Yo substrate bias is applied to reduce the standby current. Process related parameters are listed in Table 1. A double-level poly-Si and double level A1 process has been employed for circuit speed. The cell capacitor is planar and the design rule is 1.2pm. A microphotograph of the chip is shown in Figure 4. Figure 5 demonstrates a typical address access time of 62ns. The slower access is the worst case access time; Le., refresh operation taking place in advance of the normal access. The faster access is without refresh. This measurement is carried out by a test enable pin that affords control of the refresh-request signal externally. Since the access time without refresh is 48ns, the access time overhead by the background refresh is 29%. Electron beam tested internal waveforms are also shown in Figure 5. Quick switch from refresh to normal operation can be achieved by the dual bootstrap system, where one system is precharged when the other one is in operation. The pin configuration is shown in Figure 6. SRAMs. The SRAM is believed to be a promising substitute for large-capacity Acknowledgments The authors wish to thank S. Fujii, S. Saito, K. Natori, T. Ohtani, K. Taniguchi, Y. Nishi and K. Shimuzu for encouragement and discussions. Theyalso thank Y. Ito, K. Sat0 and K. Matsuda for support. Technology Twin well CMOS Layers Double poly-Si and double A1 Gate length l .op(NMOS), 1.2puPMOS) Junction depth 0.20,u(N+), 0.35p(Pt) Cap. oxide thickness l0nm Gate oxide thickn ss 20nm Poly-Si (WidthlSpace) 1.0pm / 1.4pm 1 s t AI (WidthlSpace) 1.3pm / 1.5pm Contact hole 1.lpm / 1.4pm 2nd Al (WidthlSpace) 1.8pm / 1.9pm Via hole 1.8pm / 2.0pm TABLE 1-Process parameters.\",\"PeriodicalId\":440688,\"journal\":{\"name\":\"1986 IEEE International Solid-State Circuits Conference. Digest of Technical Papers\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1986 IEEE International Solid-State Circuits Conference. Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.1986.1156930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1986 IEEE International Solid-State Circuits Conference. Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.1986.1156930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
摘要
“基于亚微米几何结构的抑制VLSI”,《国际集成电路学报》(ISSCC DIGEST)。和Iizuka, T.,“热载流子O F T E C H I C A L P A P E R S, P . 272-273;1985年2月,。“热!”他发表了。在“亚微米VLSI环境中的载波生成”中,IEEE插入(NOEMI)技术被选择性地应用于自引导节点,以赋予电路热载流子电阻。n通道存储单元嵌入在p阱中,以防止来自I/O引脚和α粒子诱导电子的少数载流子注入。Yo衬底偏压应用于减少待机电流。工艺相关参数如表1所示。采用双能级多晶硅和双能级A1工艺提高电路速度。电池电容器为平面型,设计准则为1.2pm。芯片的显微照片如图4所示。图5展示了典型的地址访问时间为62ns。较慢的访问是最坏情况下的访问时间;勒。,刷新操作发生在正常访问之前。更快的访问是不需要刷新。该测量由一个测试使能引脚执行,该引脚对外提供刷新请求信号的控制。由于没有刷新的访问时间为48ns,因此后台刷新的访问时间开销为29%。电子束测试的内部波形如图5所示。双启动系统可以实现从刷新到正常运行的快速切换,其中一个系统在另一个系统运行时进行预充电。引脚配置如图6所示。sram。作者希望感谢S. Fujii, S. Saito, K. Natori, T. Ohtani, K. Taniguchi, Y. Nishi和K. Shimuzu的鼓励和讨论。他们还感谢伊藤、佐藤和松田的支持。双孔CMOS层双poly-Si和双A1栅极长度1. op(NMOS), 1.2puPMOS)结深0.20,u(N+), 0.35p(Pt)顶盖氧化层厚度10nm栅极氧化层厚度ss 20nm poly-Si (WidthlSpace) 1.0pm / 1.4pm 1 s t AI (WidthlSpace) 1.3pm / 1.5pm接触孔1。lpm / 1.4pm第二Al (WidthlSpace) 1.8pm / 1.9pm通孔1.8pm / 2.0pm表1-工艺参数
Suppressed VLSI with Submicron Geometry”, ISSCC DIGEST ’Sakurai, T., Kakumu, M . and Iizuka, T., “Hot-Carrier O F T E C H N I C A L P A P E R S , p. 272-273; Feb., 1985. “HotJ S S C ; to he published. Carrier Generation in Submicron VLSI Environment”, IEEE Insertion (NOEMI) technology5 is applied selectively to bootstraped nodes to endow hot-carrier resistancy to the circuits. N-channel memory cells are embedded in a P-well for protection from the minority carrier injection from I/O pins and alpha-particle induced electrons. Yo substrate bias is applied to reduce the standby current. Process related parameters are listed in Table 1. A double-level poly-Si and double level A1 process has been employed for circuit speed. The cell capacitor is planar and the design rule is 1.2pm. A microphotograph of the chip is shown in Figure 4. Figure 5 demonstrates a typical address access time of 62ns. The slower access is the worst case access time; Le., refresh operation taking place in advance of the normal access. The faster access is without refresh. This measurement is carried out by a test enable pin that affords control of the refresh-request signal externally. Since the access time without refresh is 48ns, the access time overhead by the background refresh is 29%. Electron beam tested internal waveforms are also shown in Figure 5. Quick switch from refresh to normal operation can be achieved by the dual bootstrap system, where one system is precharged when the other one is in operation. The pin configuration is shown in Figure 6. SRAMs. The SRAM is believed to be a promising substitute for large-capacity Acknowledgments The authors wish to thank S. Fujii, S. Saito, K. Natori, T. Ohtani, K. Taniguchi, Y. Nishi and K. Shimuzu for encouragement and discussions. Theyalso thank Y. Ito, K. Sat0 and K. Matsuda for support. Technology Twin well CMOS Layers Double poly-Si and double A1 Gate length l .op(NMOS), 1.2puPMOS) Junction depth 0.20,u(N+), 0.35p(Pt) Cap. oxide thickness l0nm Gate oxide thickn ss 20nm Poly-Si (WidthlSpace) 1.0pm / 1.4pm 1 s t AI (WidthlSpace) 1.3pm / 1.5pm Contact hole 1.lpm / 1.4pm 2nd Al (WidthlSpace) 1.8pm / 1.9pm Via hole 1.8pm / 2.0pm TABLE 1-Process parameters.