模形式的斜率和可约伽罗瓦表示,鬼猜想中的一个疏忽

John Bergdall, R. Pollack
{"title":"模形式的斜率和可约伽罗瓦表示,鬼猜想中的一个疏忽","authors":"John Bergdall, R. Pollack","doi":"10.1090/bproc/136","DOIUrl":null,"url":null,"abstract":"The ghost conjecture, formulated by this article’s authors, predicts the list of \n\n \n p\n p\n \n\n-adic valuations of the non-zero \n\n \n \n a\n p\n \n a_p\n \n\n-eigenvalues (“slopes”) for overconvergent \n\n \n p\n p\n \n\n-adic modular eigenforms in terms of the Newton polygon of an easy-to-describe power series (the “ghost series”). The prediction is restricted to eigenforms whose Galois representation modulo \n\n \n p\n p\n \n\n is reducible on a decomposition group at \n\n \n p\n p\n \n\n. It has been discovered, however, that the conjecture is not formulated correctly. Here we explain the issue and propose a salvage.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Slopes of modular forms and reducible Galois representations, an oversight in the ghost conjecture\",\"authors\":\"John Bergdall, R. Pollack\",\"doi\":\"10.1090/bproc/136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ghost conjecture, formulated by this article’s authors, predicts the list of \\n\\n \\n p\\n p\\n \\n\\n-adic valuations of the non-zero \\n\\n \\n \\n a\\n p\\n \\n a_p\\n \\n\\n-eigenvalues (“slopes”) for overconvergent \\n\\n \\n p\\n p\\n \\n\\n-adic modular eigenforms in terms of the Newton polygon of an easy-to-describe power series (the “ghost series”). The prediction is restricted to eigenforms whose Galois representation modulo \\n\\n \\n p\\n p\\n \\n\\n is reducible on a decomposition group at \\n\\n \\n p\\n p\\n \\n\\n. It has been discovered, however, that the conjecture is not formulated correctly. Here we explain the issue and propose a salvage.\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

鬼猜想,由本文的作者表述,预测非零a p a_p -特征值(“斜率”)的p p -进模特征形式的p p -进值列表,以易于描述的幂级数(“鬼级数”)的牛顿多边形表示。该预测仅限于伽罗瓦表示模在p点分解群上可约的特征形式。然而,人们已经发现,这个猜想的表述是不正确的。在这里,我们解释了这个问题,并提出了一个救助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Slopes of modular forms and reducible Galois representations, an oversight in the ghost conjecture
The ghost conjecture, formulated by this article’s authors, predicts the list of p p -adic valuations of the non-zero a p a_p -eigenvalues (“slopes”) for overconvergent p p -adic modular eigenforms in terms of the Newton polygon of an easy-to-describe power series (the “ghost series”). The prediction is restricted to eigenforms whose Galois representation modulo p p is reducible on a decomposition group at p p . It has been discovered, however, that the conjecture is not formulated correctly. Here we explain the issue and propose a salvage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信