光声断层成像的指数路径到最大的Photonics West会议:从细胞器到生物体的全尺度成像(会议报告)

Lihong V. Wang
{"title":"光声断层成像的指数路径到最大的Photonics West会议:从细胞器到生物体的全尺度成像(会议报告)","authors":"Lihong V. Wang","doi":"10.1117/12.2515432","DOIUrl":null,"url":null,"abstract":"Photoacoustic tomography has been developed for in vivo functional, metabolic, molecular, and histologic imaging by physically combining optical and ultrasonic waves. Broad applications include early-cancer detection and brain imaging. High-resolution optical imaging—such as confocal microscopy, two-photon microscopy, and optical coherence tomography—is limited to superficial imaging within the optical diffusion limit (~1 mm in the skin) of the surface of scattering tissue. By synergistically combining light and sound, photoacoustic tomography conquers the optical diffusion limit and provides deep penetration at high ultrasonic resolution and high optical contrast. Photoacoustic tomography has two major embodiments: photoacoustic computed tomography and photoacoustic microscopy. In photoacoustic computed tomography, a pulsed broad laser beam illuminates the biological tissue to generate a small but rapid temperature rise, which leads to emission of ultrasonic waves due to thermoelastic expansion. The unscattered pulsed ultrasonic waves are then detected by ultrasonic transducers. High-resolution tomographic images of optical contrast are then formed through image reconstruction. In photoacoustic microscopy, a pulsed laser beam is delivered into the biological tissue to generate ultrasonic waves, which are then detected with a focused ultrasonic transducer to form a depth resolved 1D image. Raster scanning yields 3D high-resolution tomographic images. Super-depths beyond the optical diffusion limit have been reached with high spatial resolution. The annual conference on PAT has grown exponentially since early 2000 and become the largest in SPIE’s 20,000-attendee Photonics West since 2010.","PeriodicalId":206495,"journal":{"name":"Photons Plus Ultrasound: Imaging and Sensing 2019","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential path of photoacoustic tomography to the largest conference at Photonics West: omniscale imaging from organelles to organisms (Conference Presentation)\",\"authors\":\"Lihong V. Wang\",\"doi\":\"10.1117/12.2515432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photoacoustic tomography has been developed for in vivo functional, metabolic, molecular, and histologic imaging by physically combining optical and ultrasonic waves. Broad applications include early-cancer detection and brain imaging. High-resolution optical imaging—such as confocal microscopy, two-photon microscopy, and optical coherence tomography—is limited to superficial imaging within the optical diffusion limit (~1 mm in the skin) of the surface of scattering tissue. By synergistically combining light and sound, photoacoustic tomography conquers the optical diffusion limit and provides deep penetration at high ultrasonic resolution and high optical contrast. Photoacoustic tomography has two major embodiments: photoacoustic computed tomography and photoacoustic microscopy. In photoacoustic computed tomography, a pulsed broad laser beam illuminates the biological tissue to generate a small but rapid temperature rise, which leads to emission of ultrasonic waves due to thermoelastic expansion. The unscattered pulsed ultrasonic waves are then detected by ultrasonic transducers. High-resolution tomographic images of optical contrast are then formed through image reconstruction. In photoacoustic microscopy, a pulsed laser beam is delivered into the biological tissue to generate ultrasonic waves, which are then detected with a focused ultrasonic transducer to form a depth resolved 1D image. Raster scanning yields 3D high-resolution tomographic images. Super-depths beyond the optical diffusion limit have been reached with high spatial resolution. The annual conference on PAT has grown exponentially since early 2000 and become the largest in SPIE’s 20,000-attendee Photonics West since 2010.\",\"PeriodicalId\":206495,\"journal\":{\"name\":\"Photons Plus Ultrasound: Imaging and Sensing 2019\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photons Plus Ultrasound: Imaging and Sensing 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2515432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photons Plus Ultrasound: Imaging and Sensing 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2515432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光声断层扫描通过物理结合光学和超声波,用于体内功能、代谢、分子和组织学成像。广泛的应用包括早期癌症检测和脑成像。高分辨率光学成像,如共聚焦显微镜、双光子显微镜和光学相干层析成像,仅限于散射组织表面光学扩散极限(皮肤约1毫米)内的表面成像。通过光声协同结合,光声层析成像克服了光学扩散的限制,并在高超声分辨率和高光学对比度下提供了深穿透。光声断层扫描有两个主要的实施例:光声计算机断层扫描和光声显微镜。在光声计算机断层扫描中,脉冲宽激光束照射生物组织,使其产生小而快速的温升,从而由于热弹性膨胀而导致超声波的发射。然后用超声波换能器检测未散射的脉冲超声波。然后通过图像重建形成光学对比度的高分辨率层析图像。在光声显微镜中,脉冲激光束被传送到生物组织中以产生超声波,然后用聚焦超声换能器检测超声波以形成深度分辨的一维图像。光栅扫描产生3D高分辨率断层成像图像。在高空间分辨率的条件下,达到了超过光学扩散极限的超深度。自2000年初以来,PAT年度会议呈指数级增长,自2010年以来成为SPIE 2万名与会者Photonics West中最大的会议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential path of photoacoustic tomography to the largest conference at Photonics West: omniscale imaging from organelles to organisms (Conference Presentation)
Photoacoustic tomography has been developed for in vivo functional, metabolic, molecular, and histologic imaging by physically combining optical and ultrasonic waves. Broad applications include early-cancer detection and brain imaging. High-resolution optical imaging—such as confocal microscopy, two-photon microscopy, and optical coherence tomography—is limited to superficial imaging within the optical diffusion limit (~1 mm in the skin) of the surface of scattering tissue. By synergistically combining light and sound, photoacoustic tomography conquers the optical diffusion limit and provides deep penetration at high ultrasonic resolution and high optical contrast. Photoacoustic tomography has two major embodiments: photoacoustic computed tomography and photoacoustic microscopy. In photoacoustic computed tomography, a pulsed broad laser beam illuminates the biological tissue to generate a small but rapid temperature rise, which leads to emission of ultrasonic waves due to thermoelastic expansion. The unscattered pulsed ultrasonic waves are then detected by ultrasonic transducers. High-resolution tomographic images of optical contrast are then formed through image reconstruction. In photoacoustic microscopy, a pulsed laser beam is delivered into the biological tissue to generate ultrasonic waves, which are then detected with a focused ultrasonic transducer to form a depth resolved 1D image. Raster scanning yields 3D high-resolution tomographic images. Super-depths beyond the optical diffusion limit have been reached with high spatial resolution. The annual conference on PAT has grown exponentially since early 2000 and become the largest in SPIE’s 20,000-attendee Photonics West since 2010.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信