用神经网络计算信号可控性:测试性分析和测试点插入的改进

J. Immanuel, S. Millican
{"title":"用神经网络计算信号可控性:测试性分析和测试点插入的改进","authors":"J. Immanuel, S. Millican","doi":"10.1109/NATW49237.2020.9153082","DOIUrl":null,"url":null,"abstract":"This article presents an artificial neural network-based signal probability predictor for VLSI circuits which considers reconvergent fan-outs. Current testability analysis techniques are useful for inserting test points to improve circuit testability, but reconvergent fan-outs in digital circuits creates inaccurate testability analysis. Conventional testability analysis methods like COP do not consider reconvergent fan-outs and can degrade algorithm results (e.g., test point insertion), while more advanced methods increase analysis time significantly. This study shows training and using artificial neural networks to predict signal probabilities increases post-test point insertion fault coverage compared to using COP, especially in circuits with many reconvergent fan-outs.","PeriodicalId":147604,"journal":{"name":"2020 IEEE 29th North Atlantic Test Workshop (NATW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Calculating Signal Controllability using Neural Networks: Improvements to Testability Analysis and Test Point Insertion\",\"authors\":\"J. Immanuel, S. Millican\",\"doi\":\"10.1109/NATW49237.2020.9153082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents an artificial neural network-based signal probability predictor for VLSI circuits which considers reconvergent fan-outs. Current testability analysis techniques are useful for inserting test points to improve circuit testability, but reconvergent fan-outs in digital circuits creates inaccurate testability analysis. Conventional testability analysis methods like COP do not consider reconvergent fan-outs and can degrade algorithm results (e.g., test point insertion), while more advanced methods increase analysis time significantly. This study shows training and using artificial neural networks to predict signal probabilities increases post-test point insertion fault coverage compared to using COP, especially in circuits with many reconvergent fan-outs.\",\"PeriodicalId\":147604,\"journal\":{\"name\":\"2020 IEEE 29th North Atlantic Test Workshop (NATW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 29th North Atlantic Test Workshop (NATW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NATW49237.2020.9153082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 29th North Atlantic Test Workshop (NATW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NATW49237.2020.9153082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种考虑再收敛扇出的基于人工神经网络的超大规模集成电路信号概率预测器。当前的可测试性分析技术可以用于插入测试点以提高电路的可测试性,但数字电路中的再收敛扇出会导致不准确的可测试性分析。传统的可测试性分析方法,如COP,没有考虑再收敛扇出,并且会降低算法结果(例如,测试点插入),而更先进的方法会显著增加分析时间。该研究表明,与使用COP相比,训练和使用人工神经网络来预测信号概率增加了测试后插入点故障覆盖率,特别是在具有许多再收敛扇出的电路中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calculating Signal Controllability using Neural Networks: Improvements to Testability Analysis and Test Point Insertion
This article presents an artificial neural network-based signal probability predictor for VLSI circuits which considers reconvergent fan-outs. Current testability analysis techniques are useful for inserting test points to improve circuit testability, but reconvergent fan-outs in digital circuits creates inaccurate testability analysis. Conventional testability analysis methods like COP do not consider reconvergent fan-outs and can degrade algorithm results (e.g., test point insertion), while more advanced methods increase analysis time significantly. This study shows training and using artificial neural networks to predict signal probabilities increases post-test point insertion fault coverage compared to using COP, especially in circuits with many reconvergent fan-outs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信