视网膜图像中血管分割的一般框架

Changhua Wu, G. Agam, P. Stanchev
{"title":"视网膜图像中血管分割的一般框架","authors":"Changhua Wu, G. Agam, P. Stanchev","doi":"10.1109/CIRA.2007.382924","DOIUrl":null,"url":null,"abstract":"We present a general framework for vessel segmentation in retinal images with a particular focus on small vessels. The retinal images are first processed by a nonlinear diffusion filter to smooth vessels along their principal direction. The vessels are then enhanced using a compound vessel enhancement filter that combines the eigenvalues of the Hessian matrix, the response of matched filters, and edge constraints on multiple scales. The eigenvectors of the Hessian matrix provide the orientation of vessels and so only one matched filter is necessary at each pixel on a given scale. This makes the enhancement filter is more efficient compared with existing multiscale matched filters. Edge constraints are used to suppress the response of spurious boundary edges. Finally, the center lines of vessels are tracked from seeds obtained using multiple thresholds of the enhanced image. Evaluation of the enhancement filter and the segmentation is performed on the publicly available DRIVE database.","PeriodicalId":301626,"journal":{"name":"2007 International Symposium on Computational Intelligence in Robotics and Automation","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"A general framework for vessel segmentation in retinal images\",\"authors\":\"Changhua Wu, G. Agam, P. Stanchev\",\"doi\":\"10.1109/CIRA.2007.382924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a general framework for vessel segmentation in retinal images with a particular focus on small vessels. The retinal images are first processed by a nonlinear diffusion filter to smooth vessels along their principal direction. The vessels are then enhanced using a compound vessel enhancement filter that combines the eigenvalues of the Hessian matrix, the response of matched filters, and edge constraints on multiple scales. The eigenvectors of the Hessian matrix provide the orientation of vessels and so only one matched filter is necessary at each pixel on a given scale. This makes the enhancement filter is more efficient compared with existing multiscale matched filters. Edge constraints are used to suppress the response of spurious boundary edges. Finally, the center lines of vessels are tracked from seeds obtained using multiple thresholds of the enhanced image. Evaluation of the enhancement filter and the segmentation is performed on the publicly available DRIVE database.\",\"PeriodicalId\":301626,\"journal\":{\"name\":\"2007 International Symposium on Computational Intelligence in Robotics and Automation\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Symposium on Computational Intelligence in Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIRA.2007.382924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Computational Intelligence in Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIRA.2007.382924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

我们提出了视网膜图像中血管分割的一般框架,特别关注小血管。视网膜图像首先通过非线性扩散滤波器平滑血管沿其主方向。然后使用复合血管增强滤波器对血管进行增强,该滤波器结合了Hessian矩阵的特征值、匹配滤波器的响应和多尺度上的边缘约束。Hessian矩阵的特征向量提供了容器的方向,因此在给定的尺度上,每个像素只需要一个匹配的滤波器。这使得增强滤波器比现有的多尺度匹配滤波器效率更高。边缘约束用于抑制伪边界的响应。最后,利用增强图像的多个阈值获取种子,跟踪血管中心线。增强过滤器和分割的评估是在公开可用的DRIVE数据库上执行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A general framework for vessel segmentation in retinal images
We present a general framework for vessel segmentation in retinal images with a particular focus on small vessels. The retinal images are first processed by a nonlinear diffusion filter to smooth vessels along their principal direction. The vessels are then enhanced using a compound vessel enhancement filter that combines the eigenvalues of the Hessian matrix, the response of matched filters, and edge constraints on multiple scales. The eigenvectors of the Hessian matrix provide the orientation of vessels and so only one matched filter is necessary at each pixel on a given scale. This makes the enhancement filter is more efficient compared with existing multiscale matched filters. Edge constraints are used to suppress the response of spurious boundary edges. Finally, the center lines of vessels are tracked from seeds obtained using multiple thresholds of the enhanced image. Evaluation of the enhancement filter and the segmentation is performed on the publicly available DRIVE database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信