Graphcore

S. Knowles
{"title":"Graphcore","authors":"S. Knowles","doi":"10.1109/HCS52781.2021.9567075","DOIUrl":null,"url":null,"abstract":"IPU Foundations • AI is nascent – facilitating exploration is as vital as executing known algorithms. • Tera-scale models will be necessary for “super-human” AI. • Sparse evaluation will be necessary at tera-scale, $\\text{for} \\$ $ and Watts. • Rich natural data is sequences, images, and graphs. • Post-Dennard, keep memory and logic close. • Post-Moore, parallel computing over many chips.","PeriodicalId":246531,"journal":{"name":"2021 IEEE Hot Chips 33 Symposium (HCS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Graphcore\",\"authors\":\"S. Knowles\",\"doi\":\"10.1109/HCS52781.2021.9567075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"IPU Foundations • AI is nascent – facilitating exploration is as vital as executing known algorithms. • Tera-scale models will be necessary for “super-human” AI. • Sparse evaluation will be necessary at tera-scale, $\\\\text{for} \\\\$ $ and Watts. • Rich natural data is sequences, images, and graphs. • Post-Dennard, keep memory and logic close. • Post-Moore, parallel computing over many chips.\",\"PeriodicalId\":246531,\"journal\":{\"name\":\"2021 IEEE Hot Chips 33 Symposium (HCS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Hot Chips 33 Symposium (HCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HCS52781.2021.9567075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Hot Chips 33 Symposium (HCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HCS52781.2021.9567075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

•人工智能是新生的——促进探索与执行已知算法一样重要。•“超人类”人工智能将需要万亿级模型。•稀疏评估在兆级,$\text{for} \$ $ $和瓦特级是必要的。•丰富的自然数据是序列,图像和图形。•后登纳德,保持记忆和逻辑接近。•后摩尔时代,多芯片并行计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphcore
IPU Foundations • AI is nascent – facilitating exploration is as vital as executing known algorithms. • Tera-scale models will be necessary for “super-human” AI. • Sparse evaluation will be necessary at tera-scale, $\text{for} \$ $ and Watts. • Rich natural data is sequences, images, and graphs. • Post-Dennard, keep memory and logic close. • Post-Moore, parallel computing over many chips.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信