T. James, E. Panchenko, T. L. Nguyen, Paul Mulvaney, Timothy J. Davis, Ann Roberts
{"title":"通过纳米天线增强量子点发射的偏振到彩色变换","authors":"T. James, E. Panchenko, T. L. Nguyen, Paul Mulvaney, Timothy J. Davis, Ann Roberts","doi":"10.1109/COMMAD.2014.7038703","DOIUrl":null,"url":null,"abstract":"Metallic nano-antennas have been shown to be an excellent candidate for enhancing and directing optical emission from semiconductor based quantum dots (QD). QD photoluminescence (PL) enhancement is achieved by placing a suitably orientated QD in the near-field of a resonant metallic nano-antenna. Through the careful design of an optical Vee-antenna, two distinct visible resonances can be obtained, enabling the polarization dependant enhancement of two different QD sources, thus producing a polarization-to-colour transformation at the nano-scale. Possible future applications include an optical nano-scale demultiplexer device.","PeriodicalId":175863,"journal":{"name":"2014 Conference on Optoelectronic and Microelectronic Materials & Devices","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polarisation to colour transformation via nano-antenna enhanced quantum dot emission\",\"authors\":\"T. James, E. Panchenko, T. L. Nguyen, Paul Mulvaney, Timothy J. Davis, Ann Roberts\",\"doi\":\"10.1109/COMMAD.2014.7038703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metallic nano-antennas have been shown to be an excellent candidate for enhancing and directing optical emission from semiconductor based quantum dots (QD). QD photoluminescence (PL) enhancement is achieved by placing a suitably orientated QD in the near-field of a resonant metallic nano-antenna. Through the careful design of an optical Vee-antenna, two distinct visible resonances can be obtained, enabling the polarization dependant enhancement of two different QD sources, thus producing a polarization-to-colour transformation at the nano-scale. Possible future applications include an optical nano-scale demultiplexer device.\",\"PeriodicalId\":175863,\"journal\":{\"name\":\"2014 Conference on Optoelectronic and Microelectronic Materials & Devices\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Conference on Optoelectronic and Microelectronic Materials & Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMMAD.2014.7038703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Conference on Optoelectronic and Microelectronic Materials & Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMMAD.2014.7038703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polarisation to colour transformation via nano-antenna enhanced quantum dot emission
Metallic nano-antennas have been shown to be an excellent candidate for enhancing and directing optical emission from semiconductor based quantum dots (QD). QD photoluminescence (PL) enhancement is achieved by placing a suitably orientated QD in the near-field of a resonant metallic nano-antenna. Through the careful design of an optical Vee-antenna, two distinct visible resonances can be obtained, enabling the polarization dependant enhancement of two different QD sources, thus producing a polarization-to-colour transformation at the nano-scale. Possible future applications include an optical nano-scale demultiplexer device.