一种146.52 TOPS/W深度神经网络学习处理器,具有随机粗-细修剪和自适应输入/输出/权跳变

Sangyeob Kim, Juhyoung Lee, Sanghoon Kang, Jinmook Lee, H. Yoo
{"title":"一种146.52 TOPS/W深度神经网络学习处理器,具有随机粗-细修剪和自适应输入/输出/权跳变","authors":"Sangyeob Kim, Juhyoung Lee, Sanghoon Kang, Jinmook Lee, H. Yoo","doi":"10.1109/VLSICircuits18222.2020.9162795","DOIUrl":null,"url":null,"abstract":"An energy efficient Deep-Neural-Network (DNN) learning processor is proposed for on-chip learning and iterative weight pruning (WP). This work has three key features: 1) stochastic coarse-fine pruning reduced computation workload by 99.7% compared with previous WP algorithm while maintaining high weight sparsity, 2) adaptive input/output/weight skipping (AIOWS) achieved 30.1× higher throughput than previous DNN learning processor [1] for not only the inference but also learning, 3) weight memory shared pruning unit removed on-chip weight memory access for WP. As a result, this work shows 146.52 TOPS/W energy efficiency, which is 5.79× higher than the state-of-the-art [1].","PeriodicalId":252787,"journal":{"name":"2020 IEEE Symposium on VLSI Circuits","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A 146.52 TOPS/W Deep-Neural-Network Learning Processor with Stochastic Coarse-Fine Pruning and Adaptive Input/Output/Weight Skipping\",\"authors\":\"Sangyeob Kim, Juhyoung Lee, Sanghoon Kang, Jinmook Lee, H. Yoo\",\"doi\":\"10.1109/VLSICircuits18222.2020.9162795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An energy efficient Deep-Neural-Network (DNN) learning processor is proposed for on-chip learning and iterative weight pruning (WP). This work has three key features: 1) stochastic coarse-fine pruning reduced computation workload by 99.7% compared with previous WP algorithm while maintaining high weight sparsity, 2) adaptive input/output/weight skipping (AIOWS) achieved 30.1× higher throughput than previous DNN learning processor [1] for not only the inference but also learning, 3) weight memory shared pruning unit removed on-chip weight memory access for WP. As a result, this work shows 146.52 TOPS/W energy efficiency, which is 5.79× higher than the state-of-the-art [1].\",\"PeriodicalId\":252787,\"journal\":{\"name\":\"2020 IEEE Symposium on VLSI Circuits\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSICircuits18222.2020.9162795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSICircuits18222.2020.9162795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种高效节能的深度神经网络(DNN)学习处理器,用于片上学习和迭代权修剪(WP)。这项工作有三个关键特征:1)随机粗-细剪枝与之前的WP算法相比,计算工作量减少了99.7%,同时保持了较高的权值稀疏性;2)自适应输入/输出/权值跳跃(AIOWS)在推理和学习方面的吞吐量比之前的DNN学习处理器[1]提高了30.1倍;3)权值记忆共享剪枝单元消除了WP的片上权值记忆访问。因此,本工作的能效为146.52 TOPS/W,比目前的先进技术提高了5.79倍[1]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 146.52 TOPS/W Deep-Neural-Network Learning Processor with Stochastic Coarse-Fine Pruning and Adaptive Input/Output/Weight Skipping
An energy efficient Deep-Neural-Network (DNN) learning processor is proposed for on-chip learning and iterative weight pruning (WP). This work has three key features: 1) stochastic coarse-fine pruning reduced computation workload by 99.7% compared with previous WP algorithm while maintaining high weight sparsity, 2) adaptive input/output/weight skipping (AIOWS) achieved 30.1× higher throughput than previous DNN learning processor [1] for not only the inference but also learning, 3) weight memory shared pruning unit removed on-chip weight memory access for WP. As a result, this work shows 146.52 TOPS/W energy efficiency, which is 5.79× higher than the state-of-the-art [1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信