{"title":"用于OFDM系统的高吞吐量,并行,可扩展的LDPC编码器/解码器架构","authors":"Yang Sun, M. Karkooti, Joseph R. Cavallaro","doi":"10.1109/DCAS.2006.321028","DOIUrl":null,"url":null,"abstract":"This paper presents a high throughput, parallel, scalable and irregular LDPC coding and decoding system hardware implementation that supports twelve combinations of block lengths 648, 1296, 1944 bits and code rates 1/2, 2/3, 3/4, 5/6 based on IEEE 802.11n standard. Based on architecture-aware LDPC codes, we propose an efficient joint LDPC coding and decoding hardware architecture. The prototype architecture is being implemented on FPGA and tested over the air on our wireless OFDM testbed, which is a highly capable, scalable and extensible platform for advanced wireless research. The ASIC resource requirements of the decoder are reported and a trade-off between pipelined and non-pipelined implementation is described","PeriodicalId":244429,"journal":{"name":"2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"High Throughput, Parallel, Scalable LDPC Encoder/Decoder Architecture for OFDM Systems\",\"authors\":\"Yang Sun, M. Karkooti, Joseph R. Cavallaro\",\"doi\":\"10.1109/DCAS.2006.321028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a high throughput, parallel, scalable and irregular LDPC coding and decoding system hardware implementation that supports twelve combinations of block lengths 648, 1296, 1944 bits and code rates 1/2, 2/3, 3/4, 5/6 based on IEEE 802.11n standard. Based on architecture-aware LDPC codes, we propose an efficient joint LDPC coding and decoding hardware architecture. The prototype architecture is being implemented on FPGA and tested over the air on our wireless OFDM testbed, which is a highly capable, scalable and extensible platform for advanced wireless research. The ASIC resource requirements of the decoder are reported and a trade-off between pipelined and non-pipelined implementation is described\",\"PeriodicalId\":244429,\"journal\":{\"name\":\"2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCAS.2006.321028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCAS.2006.321028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High Throughput, Parallel, Scalable LDPC Encoder/Decoder Architecture for OFDM Systems
This paper presents a high throughput, parallel, scalable and irregular LDPC coding and decoding system hardware implementation that supports twelve combinations of block lengths 648, 1296, 1944 bits and code rates 1/2, 2/3, 3/4, 5/6 based on IEEE 802.11n standard. Based on architecture-aware LDPC codes, we propose an efficient joint LDPC coding and decoding hardware architecture. The prototype architecture is being implemented on FPGA and tested over the air on our wireless OFDM testbed, which is a highly capable, scalable and extensible platform for advanced wireless research. The ASIC resource requirements of the decoder are reported and a trade-off between pipelined and non-pipelined implementation is described