{"title":"理解螺旋纳米螺旋桨的非高斯速度波动","authors":"Arijit Ghosh, Ambarish Ghosh","doi":"10.1109/ICEMELEC.2014.7151220","DOIUrl":null,"url":null,"abstract":"Helical magnetic nanopropellers have been a subject of active research in the last few years. In this work we present the details of the numerical calculation to model their motion in the presence of thermal fluctuations. Also pertaining to their possible use in microfluidic devices, we have included the effect of adjacent walls. The results of our numerical calculations show non-Gaussian features in the power spectrum of the propulsion velocity, in close resemblance with experimental observations.","PeriodicalId":186054,"journal":{"name":"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Understanding non-Gaussian velocity fluctuations in helical nano-propellers\",\"authors\":\"Arijit Ghosh, Ambarish Ghosh\",\"doi\":\"10.1109/ICEMELEC.2014.7151220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Helical magnetic nanopropellers have been a subject of active research in the last few years. In this work we present the details of the numerical calculation to model their motion in the presence of thermal fluctuations. Also pertaining to their possible use in microfluidic devices, we have included the effect of adjacent walls. The results of our numerical calculations show non-Gaussian features in the power spectrum of the propulsion velocity, in close resemblance with experimental observations.\",\"PeriodicalId\":186054,\"journal\":{\"name\":\"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEMELEC.2014.7151220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMELEC.2014.7151220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Understanding non-Gaussian velocity fluctuations in helical nano-propellers
Helical magnetic nanopropellers have been a subject of active research in the last few years. In this work we present the details of the numerical calculation to model their motion in the presence of thermal fluctuations. Also pertaining to their possible use in microfluidic devices, we have included the effect of adjacent walls. The results of our numerical calculations show non-Gaussian features in the power spectrum of the propulsion velocity, in close resemblance with experimental observations.