基于霍奇金-赫胥黎神经元的记忆神经网络脑启发模式分类

A. Amirsoleimani, M. Ahmadi, A. Ahmadi, M. Boukadoum
{"title":"基于霍奇金-赫胥黎神经元的记忆神经网络脑启发模式分类","authors":"A. Amirsoleimani, M. Ahmadi, A. Ahmadi, M. Boukadoum","doi":"10.1109/ICECS.2016.7841137","DOIUrl":null,"url":null,"abstract":"Recent findings about using memristor devices to mimic biological synapses in neuromorphic systems open a new vision in neuroscience. Ultra-dense learning architectures can be implemented through the Spike-Timing-Dependent-Plasticity (STDP) mechanism by exploiting these nanoscale nonvolatile devices. In this paper, a Spiking Neural Network (SNN) that uses biologically plausible mechanisms is implemented. The proposed SNN relies on Hodgkin-Huxley neurons and memristor-based synapses to implement a bio-inspired neuromorphic platform. The behavior of the proposed SNN and its learning mechanism are discussed, and test results are provided to show the effectiveness of the proposed design for pattern classification applications.","PeriodicalId":205556,"journal":{"name":"2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Brain-inspired pattern classification with memristive neural network using the Hodgkin-Huxley neuron\",\"authors\":\"A. Amirsoleimani, M. Ahmadi, A. Ahmadi, M. Boukadoum\",\"doi\":\"10.1109/ICECS.2016.7841137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent findings about using memristor devices to mimic biological synapses in neuromorphic systems open a new vision in neuroscience. Ultra-dense learning architectures can be implemented through the Spike-Timing-Dependent-Plasticity (STDP) mechanism by exploiting these nanoscale nonvolatile devices. In this paper, a Spiking Neural Network (SNN) that uses biologically plausible mechanisms is implemented. The proposed SNN relies on Hodgkin-Huxley neurons and memristor-based synapses to implement a bio-inspired neuromorphic platform. The behavior of the proposed SNN and its learning mechanism are discussed, and test results are provided to show the effectiveness of the proposed design for pattern classification applications.\",\"PeriodicalId\":205556,\"journal\":{\"name\":\"2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS.2016.7841137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2016.7841137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

最近关于使用忆阻器装置模拟神经形态系统中的生物突触的发现,为神经科学开辟了新的视野。利用这些纳米级非易失性器件,可以通过峰值-时间依赖-可塑性(STDP)机制实现超密集学习架构。在本文中,实现了一个使用生物学上合理机制的峰值神经网络(SNN)。提出的SNN依赖于霍奇金-赫胥黎神经元和基于忆阻器的突触来实现生物启发的神经形态平台。讨论了所提出的SNN的行为及其学习机制,并提供了测试结果来证明所提出的设计在模式分类应用中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Brain-inspired pattern classification with memristive neural network using the Hodgkin-Huxley neuron
Recent findings about using memristor devices to mimic biological synapses in neuromorphic systems open a new vision in neuroscience. Ultra-dense learning architectures can be implemented through the Spike-Timing-Dependent-Plasticity (STDP) mechanism by exploiting these nanoscale nonvolatile devices. In this paper, a Spiking Neural Network (SNN) that uses biologically plausible mechanisms is implemented. The proposed SNN relies on Hodgkin-Huxley neurons and memristor-based synapses to implement a bio-inspired neuromorphic platform. The behavior of the proposed SNN and its learning mechanism are discussed, and test results are provided to show the effectiveness of the proposed design for pattern classification applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信