基于相对比症状参数和贝叶斯网络的旋转机械智能状态诊断方法

Jingjing Zhu, Zhongxing Li, Ke Li, Peng Chen
{"title":"基于相对比症状参数和贝叶斯网络的旋转机械智能状态诊断方法","authors":"Jingjing Zhu, Zhongxing Li, Ke Li, Peng Chen","doi":"10.1109/ISSSE.2010.5607088","DOIUrl":null,"url":null,"abstract":"In order to effectively identify faults of a rotating mechanics, a new kind of symptom parameter — Relative Ratio Symptom Parameter (RRSP) is proposed in this paper. Moreover, combined with Bayesian Network, the corresponding fault diagnosis system is built. In the paper, the vibration signals are monitored and measured and the relative ratio symptom parameter is calculated, of which the parameters whose identification index is bigger are chosen as the input of Bayesian Network, by observing and analyzing the output that is the probability of normal state and abnormal states, Bayesian Network in the mechanical fault diagnosis is proved to be effective by real date measured in each state of a rotating machine.","PeriodicalId":211786,"journal":{"name":"2010 International Symposium on Signals, Systems and Electronics","volume":"291 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intelligent condition diagnosis method for rotating machinery using Relative Ratio Symptom Parameter and Bayesian Network\",\"authors\":\"Jingjing Zhu, Zhongxing Li, Ke Li, Peng Chen\",\"doi\":\"10.1109/ISSSE.2010.5607088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to effectively identify faults of a rotating mechanics, a new kind of symptom parameter — Relative Ratio Symptom Parameter (RRSP) is proposed in this paper. Moreover, combined with Bayesian Network, the corresponding fault diagnosis system is built. In the paper, the vibration signals are monitored and measured and the relative ratio symptom parameter is calculated, of which the parameters whose identification index is bigger are chosen as the input of Bayesian Network, by observing and analyzing the output that is the probability of normal state and abnormal states, Bayesian Network in the mechanical fault diagnosis is proved to be effective by real date measured in each state of a rotating machine.\",\"PeriodicalId\":211786,\"journal\":{\"name\":\"2010 International Symposium on Signals, Systems and Electronics\",\"volume\":\"291 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Symposium on Signals, Systems and Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSSE.2010.5607088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Symposium on Signals, Systems and Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSSE.2010.5607088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了有效地识别旋转机械的故障,本文提出了一种新的症状参数——相对比症状参数(RRSP)。并结合贝叶斯网络建立了相应的故障诊断系统。本文通过对振动信号的监测和测量,计算出识别指标较大的相对比例症状参数作为贝叶斯网络的输入,通过观察和分析输出,即正常状态和异常状态的概率,通过对旋转机械各状态的实测数据,证明了贝叶斯网络在机械故障诊断中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent condition diagnosis method for rotating machinery using Relative Ratio Symptom Parameter and Bayesian Network
In order to effectively identify faults of a rotating mechanics, a new kind of symptom parameter — Relative Ratio Symptom Parameter (RRSP) is proposed in this paper. Moreover, combined with Bayesian Network, the corresponding fault diagnosis system is built. In the paper, the vibration signals are monitored and measured and the relative ratio symptom parameter is calculated, of which the parameters whose identification index is bigger are chosen as the input of Bayesian Network, by observing and analyzing the output that is the probability of normal state and abnormal states, Bayesian Network in the mechanical fault diagnosis is proved to be effective by real date measured in each state of a rotating machine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信