Septian Isnanto, Suryarini Widodo
{"title":"PENERAPAN DATA MINING PADA PENERIMAAN MAHASISWA BARU DENGAN ALGORITMA K-MEANS CLUSTERING","authors":"Septian Isnanto, Suryarini Widodo","doi":"10.37600/tekinkom.v4i2.367","DOIUrl":null,"url":null,"abstract":"This paper aims to grouping data using Clustering method with k-means algorithm to find potential majors and type of schools that produce feature students who have a good GPA score in semester 1 and semester 2 at Politeknik STMI Jakarta. Dataset from academic data for 2017-2020 has been processed with Rapid Miner showing that in Automotive Business Administration study program there are 3 clusters of students where cluster 0 marked as best cluster is dominated by high school students majoring in Science and Social Sciences. Automotive Industry Information System study program produces 2 clusters of students where cluster 0 marked as best cluster is dominated by high school students majoring in science and vocational high school majoring in mechanical engineering. Automotive Industrial Engineering study program produces 2 clusters of students where cluster 1 marked as best cluster is dominated by high school students majoring in science. Polymer Chemical Engineering study program produces 6 student clusters where cluster 4 marked as best cluster which all come from high school students majoring in science.","PeriodicalId":365934,"journal":{"name":"Jurnal Teknik Informasi dan Komputer (Tekinkom)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknik Informasi dan Komputer (Tekinkom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37600/tekinkom.v4i2.367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是利用聚类方法和k-means算法对数据进行分组,找到Politeknik STMI Jakarta第一学期和第二学期GPA成绩好的特色学生的潜在专业和学校类型。使用Rapid Miner对2017-2020年的学术数据集进行了处理,结果表明,在汽车工商管理研究项目中,有3个学生集群,其中被标记为最佳集群的第0个集群主要是科学和社会科学专业的高中生。汽车工业信息系统研究项目产生了2个学生集群,其中被评为最佳集群的集群0主要是理工科和机械工程专业的高中学生。汽车工业工程研究项目产生了2个学生集群,其中第1个集群被标记为最佳集群,主要是理科专业的高中生。聚合物化学工程研究项目产生了6个学生集群,其中集群4被标记为最好的集群,这些学生都来自于主修科学的高中生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PENERAPAN DATA MINING PADA PENERIMAAN MAHASISWA BARU DENGAN ALGORITMA K-MEANS CLUSTERING
This paper aims to grouping data using Clustering method with k-means algorithm to find potential majors and type of schools that produce feature students who have a good GPA score in semester 1 and semester 2 at Politeknik STMI Jakarta. Dataset from academic data for 2017-2020 has been processed with Rapid Miner showing that in Automotive Business Administration study program there are 3 clusters of students where cluster 0 marked as best cluster is dominated by high school students majoring in Science and Social Sciences. Automotive Industry Information System study program produces 2 clusters of students where cluster 0 marked as best cluster is dominated by high school students majoring in science and vocational high school majoring in mechanical engineering. Automotive Industrial Engineering study program produces 2 clusters of students where cluster 1 marked as best cluster is dominated by high school students majoring in science. Polymer Chemical Engineering study program produces 6 student clusters where cluster 4 marked as best cluster which all come from high school students majoring in science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信