一个新的鲁棒NLMS算法的随机模型

L. Vega, H. Rey, J. Benesty, S. Tressens
{"title":"一个新的鲁棒NLMS算法的随机模型","authors":"L. Vega, H. Rey, J. Benesty, S. Tressens","doi":"10.5281/ZENODO.40281","DOIUrl":null,"url":null,"abstract":"We present a stochastic model for a new recently proposed robust NLMS algorithm. Under very standard and reasonable assumptions we show that the algorithm converges to the true unknown system in a mean square sense. With the aggregate of more restrictive, but standard, assumptions we can build a model for the transient behavior of the algorithm. The model can take into account the presence of impulsive noise. Finally we also present simulations results which show the excellent agreement with the model.","PeriodicalId":176384,"journal":{"name":"2007 15th European Signal Processing Conference","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A stochastic model for a new robust NLMS algorithm\",\"authors\":\"L. Vega, H. Rey, J. Benesty, S. Tressens\",\"doi\":\"10.5281/ZENODO.40281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a stochastic model for a new recently proposed robust NLMS algorithm. Under very standard and reasonable assumptions we show that the algorithm converges to the true unknown system in a mean square sense. With the aggregate of more restrictive, but standard, assumptions we can build a model for the transient behavior of the algorithm. The model can take into account the presence of impulsive noise. Finally we also present simulations results which show the excellent agreement with the model.\",\"PeriodicalId\":176384,\"journal\":{\"name\":\"2007 15th European Signal Processing Conference\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 15th European Signal Processing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.40281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 15th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.40281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种新的鲁棒NLMS算法的随机模型。在非常标准和合理的假设下,我们证明了该算法在均方意义上收敛于真正的未知系统。有了更多的限制性但标准的假设,我们可以为算法的瞬态行为建立一个模型。该模型可以考虑脉冲噪声的存在。最后给出了仿真结果,结果与模型吻合良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stochastic model for a new robust NLMS algorithm
We present a stochastic model for a new recently proposed robust NLMS algorithm. Under very standard and reasonable assumptions we show that the algorithm converges to the true unknown system in a mean square sense. With the aggregate of more restrictive, but standard, assumptions we can build a model for the transient behavior of the algorithm. The model can take into account the presence of impulsive noise. Finally we also present simulations results which show the excellent agreement with the model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信