{"title":"统计MOSFET电流的变化由于表面粗糙度散射的变化","authors":"C. Alexander, A. Asenov","doi":"10.1109/SISPAD.2011.6035022","DOIUrl":null,"url":null,"abstract":"An efficient and accurate method to include surface roughness scattering from a general, realistic synthesized surface in 3D Monte Carlo simulation is presented with verification. The method is then applied to study drain current variation due to variation in surface roughness scattering in an 18nm bulk Silicon nMOSFET, highlighting substantially increased variation at low drain bias compared with electrostatic drift diffusion simulation.","PeriodicalId":264913,"journal":{"name":"2011 International Conference on Simulation of Semiconductor Processes and Devices","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Statistical MOSFET current variation due to variation in surface roughness scattering\",\"authors\":\"C. Alexander, A. Asenov\",\"doi\":\"10.1109/SISPAD.2011.6035022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient and accurate method to include surface roughness scattering from a general, realistic synthesized surface in 3D Monte Carlo simulation is presented with verification. The method is then applied to study drain current variation due to variation in surface roughness scattering in an 18nm bulk Silicon nMOSFET, highlighting substantially increased variation at low drain bias compared with electrostatic drift diffusion simulation.\",\"PeriodicalId\":264913,\"journal\":{\"name\":\"2011 International Conference on Simulation of Semiconductor Processes and Devices\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Simulation of Semiconductor Processes and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2011.6035022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Simulation of Semiconductor Processes and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2011.6035022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Statistical MOSFET current variation due to variation in surface roughness scattering
An efficient and accurate method to include surface roughness scattering from a general, realistic synthesized surface in 3D Monte Carlo simulation is presented with verification. The method is then applied to study drain current variation due to variation in surface roughness scattering in an 18nm bulk Silicon nMOSFET, highlighting substantially increased variation at low drain bias compared with electrostatic drift diffusion simulation.