E. Saad, M. El-Adawy, M. E. Abu-El-Wafa, A. A. Wahba
{"title":"多功能语音/音乐识别系统","authors":"E. Saad, M. El-Adawy, M. E. Abu-El-Wafa, A. A. Wahba","doi":"10.1109/NRSC.2002.1022623","DOIUrl":null,"url":null,"abstract":"This paper presents a new technique for the automatic classification of audio signals into either speech or music signal. The classification is based on the most efficient five features extracted from the input signal. The correct classification ratio is always better than that using previous algorithms.","PeriodicalId":231600,"journal":{"name":"Proceedings of the Nineteenth National Radio Science Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A multifeature speech/music discrimination system\",\"authors\":\"E. Saad, M. El-Adawy, M. E. Abu-El-Wafa, A. A. Wahba\",\"doi\":\"10.1109/NRSC.2002.1022623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new technique for the automatic classification of audio signals into either speech or music signal. The classification is based on the most efficient five features extracted from the input signal. The correct classification ratio is always better than that using previous algorithms.\",\"PeriodicalId\":231600,\"journal\":{\"name\":\"Proceedings of the Nineteenth National Radio Science Conference\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Nineteenth National Radio Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRSC.2002.1022623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Nineteenth National Radio Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.2002.1022623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents a new technique for the automatic classification of audio signals into either speech or music signal. The classification is based on the most efficient five features extracted from the input signal. The correct classification ratio is always better than that using previous algorithms.