Zipeng Li, Kelvin Yi-Tse Lai, Po-Hsien Yu, Tsung-Yi Ho, K. Chakrabarty, Chen-Yi Lee
{"title":"微电极点阵列数字微流控生物芯片的高水平合成","authors":"Zipeng Li, Kelvin Yi-Tse Lai, Po-Hsien Yu, Tsung-Yi Ho, K. Chakrabarty, Chen-Yi Lee","doi":"10.1145/2897937.2898028","DOIUrl":null,"url":null,"abstract":"A digital microfluidic biochip (DMFB) is an attractive technology platform for automating laboratory procedures in biochemistry. However, today's DMFBs suffer from several limitations: (i) constraints on droplet size and the inability to vary droplet volume in a fine-grained manner; (ii) the lack of integrated sensors for real-time detection; (iii) the need for special fabrication processes and reliability/yield concerns. To overcome the above problems, DMFBs based on a micro-electrode-dot-array (MEDA) architecture have recently been demonstrated. However, due to the inherent differences between today's DMFBs and MEDA, existing synthesis solutions cannot be utilized for MEDA-based biochips. We present the first biochip synthesis approach that can be used for MEDA. The proposed synthesis method targets operation scheduling, module placement, routing of droplets of various sizes, and diagonal movement of droplets in a two-dimensional array. Simulation results using benchmarks and experimental results using a fabricated MEDA biochip demonstrate the effectiveness of the proposed co-optimization technique.","PeriodicalId":185271,"journal":{"name":"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"High-level synthesis for micro-electrode-dot-array digital microfluidic biochips\",\"authors\":\"Zipeng Li, Kelvin Yi-Tse Lai, Po-Hsien Yu, Tsung-Yi Ho, K. Chakrabarty, Chen-Yi Lee\",\"doi\":\"10.1145/2897937.2898028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A digital microfluidic biochip (DMFB) is an attractive technology platform for automating laboratory procedures in biochemistry. However, today's DMFBs suffer from several limitations: (i) constraints on droplet size and the inability to vary droplet volume in a fine-grained manner; (ii) the lack of integrated sensors for real-time detection; (iii) the need for special fabrication processes and reliability/yield concerns. To overcome the above problems, DMFBs based on a micro-electrode-dot-array (MEDA) architecture have recently been demonstrated. However, due to the inherent differences between today's DMFBs and MEDA, existing synthesis solutions cannot be utilized for MEDA-based biochips. We present the first biochip synthesis approach that can be used for MEDA. The proposed synthesis method targets operation scheduling, module placement, routing of droplets of various sizes, and diagonal movement of droplets in a two-dimensional array. Simulation results using benchmarks and experimental results using a fabricated MEDA biochip demonstrate the effectiveness of the proposed co-optimization technique.\",\"PeriodicalId\":185271,\"journal\":{\"name\":\"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897937.2898028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897937.2898028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-level synthesis for micro-electrode-dot-array digital microfluidic biochips
A digital microfluidic biochip (DMFB) is an attractive technology platform for automating laboratory procedures in biochemistry. However, today's DMFBs suffer from several limitations: (i) constraints on droplet size and the inability to vary droplet volume in a fine-grained manner; (ii) the lack of integrated sensors for real-time detection; (iii) the need for special fabrication processes and reliability/yield concerns. To overcome the above problems, DMFBs based on a micro-electrode-dot-array (MEDA) architecture have recently been demonstrated. However, due to the inherent differences between today's DMFBs and MEDA, existing synthesis solutions cannot be utilized for MEDA-based biochips. We present the first biochip synthesis approach that can be used for MEDA. The proposed synthesis method targets operation scheduling, module placement, routing of droplets of various sizes, and diagonal movement of droplets in a two-dimensional array. Simulation results using benchmarks and experimental results using a fabricated MEDA biochip demonstrate the effectiveness of the proposed co-optimization technique.