灾害

Raymond Murphy
{"title":"灾害","authors":"Raymond Murphy","doi":"10.4324/9780367816681-27","DOIUrl":null,"url":null,"abstract":"A notion of geometric structure can be given to a set of points without using a coordinate system by instead describing geometric relations between finite combinations of elements. The fundamental problem is to then characterize when the points of such a “geometry” have a consistent coordinatization. Matroids are a first step in such a characterization as they require that geometric relations satisfy inherent abstract properties. Concretely, let E be a finite set and I be a collection of subsets of E. The problem is to characterize pairs (E, I) for which there exists a “representation” of E as vectors in a vector space over a field F where I corresponds to the linear independent subsets of E. Necessary conditions for such a representation to exist include: the empty set is independent, subsets of independent sets are also independent, and for each subset X, the maximal independent subsets of X have the same size. When these properties hold, we say that (E, I) describes a matroid. As a result of these properties, matroids provide many useful concepts and are an appropriate context in which to consider characterizations. Mayhew, Newman, and Whittle showed that there exist pathological obstructions to natural axiomatic and forbidden-substructure characterizations of real-representable matroids. Furthermore, an extension of a result of Seymour illustrates that there is high computational complexity in verifying that a representation exists. This thesis shows that such pathologies still persist even if it is known that there exists a coordinatization with complex numbers and a sense of orientation, both of which are necessary to have a coordinatization over the reals.","PeriodicalId":312814,"journal":{"name":"Essential Concepts of Global Environmental Governance","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disasters\",\"authors\":\"Raymond Murphy\",\"doi\":\"10.4324/9780367816681-27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A notion of geometric structure can be given to a set of points without using a coordinate system by instead describing geometric relations between finite combinations of elements. The fundamental problem is to then characterize when the points of such a “geometry” have a consistent coordinatization. Matroids are a first step in such a characterization as they require that geometric relations satisfy inherent abstract properties. Concretely, let E be a finite set and I be a collection of subsets of E. The problem is to characterize pairs (E, I) for which there exists a “representation” of E as vectors in a vector space over a field F where I corresponds to the linear independent subsets of E. Necessary conditions for such a representation to exist include: the empty set is independent, subsets of independent sets are also independent, and for each subset X, the maximal independent subsets of X have the same size. When these properties hold, we say that (E, I) describes a matroid. As a result of these properties, matroids provide many useful concepts and are an appropriate context in which to consider characterizations. Mayhew, Newman, and Whittle showed that there exist pathological obstructions to natural axiomatic and forbidden-substructure characterizations of real-representable matroids. Furthermore, an extension of a result of Seymour illustrates that there is high computational complexity in verifying that a representation exists. This thesis shows that such pathologies still persist even if it is known that there exists a coordinatization with complex numbers and a sense of orientation, both of which are necessary to have a coordinatization over the reals.\",\"PeriodicalId\":312814,\"journal\":{\"name\":\"Essential Concepts of Global Environmental Governance\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Essential Concepts of Global Environmental Governance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4324/9780367816681-27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essential Concepts of Global Environmental Governance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4324/9780367816681-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disasters
A notion of geometric structure can be given to a set of points without using a coordinate system by instead describing geometric relations between finite combinations of elements. The fundamental problem is to then characterize when the points of such a “geometry” have a consistent coordinatization. Matroids are a first step in such a characterization as they require that geometric relations satisfy inherent abstract properties. Concretely, let E be a finite set and I be a collection of subsets of E. The problem is to characterize pairs (E, I) for which there exists a “representation” of E as vectors in a vector space over a field F where I corresponds to the linear independent subsets of E. Necessary conditions for such a representation to exist include: the empty set is independent, subsets of independent sets are also independent, and for each subset X, the maximal independent subsets of X have the same size. When these properties hold, we say that (E, I) describes a matroid. As a result of these properties, matroids provide many useful concepts and are an appropriate context in which to consider characterizations. Mayhew, Newman, and Whittle showed that there exist pathological obstructions to natural axiomatic and forbidden-substructure characterizations of real-representable matroids. Furthermore, an extension of a result of Seymour illustrates that there is high computational complexity in verifying that a representation exists. This thesis shows that such pathologies still persist even if it is known that there exists a coordinatization with complex numbers and a sense of orientation, both of which are necessary to have a coordinatization over the reals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信