设计和开发一个社会网络分析框架

Navpreet Kaur, M. Singh, V. P. Singh
{"title":"设计和开发一个社会网络分析框架","authors":"Navpreet Kaur, M. Singh, V. P. Singh","doi":"10.1109/INVENTIVE.2016.7830086","DOIUrl":null,"url":null,"abstract":"Now a days everything around the globe is connected via networks like information, places and events which make a tangle of connections. Analyzing social network is to make sense of these complex connections. This work represents the framework to analyze Twitter social media tweets using Network X and Twitter API. Python language tool IPython/Jupyter is used to examine the networks by applying visual analytic techniques like degree centrality and betweenness centrality to the dataset of Twitter hashtags which provides an easier way to analyze the network connections. This framework describes methodology to diagnose each tweet for identification of certain pattern like ‘who talk to whom about what’ and ‘most influential person’ in the interconnected/attached network.","PeriodicalId":252950,"journal":{"name":"2016 International Conference on Inventive Computation Technologies (ICICT)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design and develop a framework for social networking analysis\",\"authors\":\"Navpreet Kaur, M. Singh, V. P. Singh\",\"doi\":\"10.1109/INVENTIVE.2016.7830086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Now a days everything around the globe is connected via networks like information, places and events which make a tangle of connections. Analyzing social network is to make sense of these complex connections. This work represents the framework to analyze Twitter social media tweets using Network X and Twitter API. Python language tool IPython/Jupyter is used to examine the networks by applying visual analytic techniques like degree centrality and betweenness centrality to the dataset of Twitter hashtags which provides an easier way to analyze the network connections. This framework describes methodology to diagnose each tweet for identification of certain pattern like ‘who talk to whom about what’ and ‘most influential person’ in the interconnected/attached network.\",\"PeriodicalId\":252950,\"journal\":{\"name\":\"2016 International Conference on Inventive Computation Technologies (ICICT)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Inventive Computation Technologies (ICICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INVENTIVE.2016.7830086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Inventive Computation Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INVENTIVE.2016.7830086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

如今,全球的一切都通过信息、地点和事件等网络联系在一起,形成了错综复杂的联系。分析社会网络就是为了弄清这些复杂的联系。这项工作代表了使用Network X和Twitter API分析Twitter社交媒体tweet的框架。Python语言工具IPython/Jupyter通过对Twitter标签数据集应用可视化分析技术(如度中心性和间中心性)来检查网络,这提供了一种更简单的方法来分析网络连接。该框架描述了诊断每条推文的方法,以识别某些模式,如“谁与谁谈论了什么”和“最具影响力的人”在相互关联/附加的网络中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and develop a framework for social networking analysis
Now a days everything around the globe is connected via networks like information, places and events which make a tangle of connections. Analyzing social network is to make sense of these complex connections. This work represents the framework to analyze Twitter social media tweets using Network X and Twitter API. Python language tool IPython/Jupyter is used to examine the networks by applying visual analytic techniques like degree centrality and betweenness centrality to the dataset of Twitter hashtags which provides an easier way to analyze the network connections. This framework describes methodology to diagnose each tweet for identification of certain pattern like ‘who talk to whom about what’ and ‘most influential person’ in the interconnected/attached network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信