利用二进制综合征格架搜索高速率卷积码

F. Hug, I. Bocharova, R. Johannesson, B. Kudryashov
{"title":"利用二进制综合征格架搜索高速率卷积码","authors":"F. Hug, I. Bocharova, R. Johannesson, B. Kudryashov","doi":"10.1109/ISIT.2009.5205916","DOIUrl":null,"url":null,"abstract":"Rate R = (c-1)/c convolutional codes of constraint length ν can be represented by conventional syndrome trellises with a state complexity of s = ν or by binary syndrome trellises with a state complexity of s = ν or s = ν + 1, which corresponds to at most 2s states at each trellis level. It is shown that if the parity-check polynomials fulfill certain conditions, there exist binary syndrome trellises with optimum state complexity s = ν. The BEAST is modified to handle parity-check matrices and used to generate code tables for optimum free distance rate R = (c - 1)=c, c = 3; 4; 5, convolutional codes for conventional syndrome trellises and binary syndrome trellises with optimum state complexity. These results show that the loss in distance properties due to the optimum state complexity restriction for binary trellises is typically negligible.","PeriodicalId":412925,"journal":{"name":"2009 IEEE International Symposium on Information Theory","volume":"32 50","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Searching for high-rate convolutional codes via binary syndrome trellises\",\"authors\":\"F. Hug, I. Bocharova, R. Johannesson, B. Kudryashov\",\"doi\":\"10.1109/ISIT.2009.5205916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rate R = (c-1)/c convolutional codes of constraint length ν can be represented by conventional syndrome trellises with a state complexity of s = ν or by binary syndrome trellises with a state complexity of s = ν or s = ν + 1, which corresponds to at most 2s states at each trellis level. It is shown that if the parity-check polynomials fulfill certain conditions, there exist binary syndrome trellises with optimum state complexity s = ν. The BEAST is modified to handle parity-check matrices and used to generate code tables for optimum free distance rate R = (c - 1)=c, c = 3; 4; 5, convolutional codes for conventional syndrome trellises and binary syndrome trellises with optimum state complexity. These results show that the loss in distance properties due to the optimum state complexity restriction for binary trellises is typically negligible.\",\"PeriodicalId\":412925,\"journal\":{\"name\":\"2009 IEEE International Symposium on Information Theory\",\"volume\":\"32 50\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2009.5205916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2009.5205916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

速率R = (c-1)/c约束长度为ν的卷积码可以用状态复杂度为s = ν的常规证型格表示,也可以用状态复杂度为s = ν或s = ν + 1的二进制证型格表示,每个格级最多对应2s个状态。证明了当奇偶校验多项式满足一定条件时,存在最优状态复杂度s = ν的二元证型格阵。BEAST被修改为处理奇偶校验矩阵,并用于生成最优自由距离率的代码表R = (c - 1)=c, c = 3;4;具有最优状态复杂度的传统格阵和二元格阵的卷积编码。这些结果表明,由于二元网格的最佳状态复杂度限制,距离性质的损失通常可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Searching for high-rate convolutional codes via binary syndrome trellises
Rate R = (c-1)/c convolutional codes of constraint length ν can be represented by conventional syndrome trellises with a state complexity of s = ν or by binary syndrome trellises with a state complexity of s = ν or s = ν + 1, which corresponds to at most 2s states at each trellis level. It is shown that if the parity-check polynomials fulfill certain conditions, there exist binary syndrome trellises with optimum state complexity s = ν. The BEAST is modified to handle parity-check matrices and used to generate code tables for optimum free distance rate R = (c - 1)=c, c = 3; 4; 5, convolutional codes for conventional syndrome trellises and binary syndrome trellises with optimum state complexity. These results show that the loss in distance properties due to the optimum state complexity restriction for binary trellises is typically negligible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信