机器人连续路径应用中的轨迹规划

J. Angeles, A. Rojas, C. López-Cajún
{"title":"机器人连续路径应用中的轨迹规划","authors":"J. Angeles, A. Rojas, C. López-Cajún","doi":"10.1109/56.801","DOIUrl":null,"url":null,"abstract":"Trajectory planning of robot motions for continuous-path operations is formulated in configuration space, resorting to the intrinsic properties of the path traced by point of the end effector. It is shown that, by referring the orientation of the end effector to a unique orthogonal frame defined at every point of the aforementioned path, a systematic procedure for trajectory planning in configuration space is derived. The computations required to determine the angular velocity and angular acceleration of the path frame reduce to computing the Darboux vector of the path and its time derivative. >","PeriodicalId":370047,"journal":{"name":"IEEE J. Robotics Autom.","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"Trajectory planning in robotic continuous-path applications\",\"authors\":\"J. Angeles, A. Rojas, C. López-Cajún\",\"doi\":\"10.1109/56.801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trajectory planning of robot motions for continuous-path operations is formulated in configuration space, resorting to the intrinsic properties of the path traced by point of the end effector. It is shown that, by referring the orientation of the end effector to a unique orthogonal frame defined at every point of the aforementioned path, a systematic procedure for trajectory planning in configuration space is derived. The computations required to determine the angular velocity and angular acceleration of the path frame reduce to computing the Darboux vector of the path and its time derivative. >\",\"PeriodicalId\":370047,\"journal\":{\"name\":\"IEEE J. Robotics Autom.\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE J. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/56.801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/56.801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

利用末端执行器点所跟踪的路径的固有性质,在位形空间中建立了机器人连续路径运动的轨迹规划。结果表明,通过将末端执行器的姿态引用到在上述路径的每一点上定义的唯一正交坐标系中,推导出了在组态空间中进行轨迹规划的系统程序。确定路径框架的角速度和角加速度所需的计算简化为计算路径的达布向量及其时间导数。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trajectory planning in robotic continuous-path applications
Trajectory planning of robot motions for continuous-path operations is formulated in configuration space, resorting to the intrinsic properties of the path traced by point of the end effector. It is shown that, by referring the orientation of the end effector to a unique orthogonal frame defined at every point of the aforementioned path, a systematic procedure for trajectory planning in configuration space is derived. The computations required to determine the angular velocity and angular acceleration of the path frame reduce to computing the Darboux vector of the path and its time derivative. >
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信