{"title":"一种适合于电池储能系统中锂离子健康诊断的低成本、快速阻抗测量技术","authors":"D. Stone, M. Foster, E. Ballantyne, H. Price","doi":"10.12720/SGCE.9.2.346-356","DOIUrl":null,"url":null,"abstract":"Battery energy storage is becoming a vital part of green energy systems. Prediction of the state of health of energy storage systems is difficult as it relies on a number of parameters. Pseudo Random Binary Sequence (PRBS) excitation of energy storage batteries has been shown to be a valid method of battery parameter identification for lead acid batteries [1]. The purpose of this work is to validate PRBS test data from a 3Ah LiFePO4 cell forming part of an EV battery-pack cell against Electrochemical Impedance Spectroscopy (EIS) data obtained from an industry-standard potentiostat (Solartron 1480). PRBS results are obtained in under 200 seconds on easily reproducible equipment which can be built into a green energy battery management system, while the EIS process takes over two hours on prohibitively expensive laboratory equipment. This work validates PRBS as a fast and portable method of obtaining the impedance spectrum of Lithium Ion cells, which can then be used to obtain information about SoH of the BESS.","PeriodicalId":247617,"journal":{"name":"International Journal of Smart Grid and Clean Energy","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low Cost, Rapid Impedance Measurement Technique Suitable for Li-ion Health Diagnosis in Battery Energy Storage Systems\",\"authors\":\"D. Stone, M. Foster, E. Ballantyne, H. Price\",\"doi\":\"10.12720/SGCE.9.2.346-356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Battery energy storage is becoming a vital part of green energy systems. Prediction of the state of health of energy storage systems is difficult as it relies on a number of parameters. Pseudo Random Binary Sequence (PRBS) excitation of energy storage batteries has been shown to be a valid method of battery parameter identification for lead acid batteries [1]. The purpose of this work is to validate PRBS test data from a 3Ah LiFePO4 cell forming part of an EV battery-pack cell against Electrochemical Impedance Spectroscopy (EIS) data obtained from an industry-standard potentiostat (Solartron 1480). PRBS results are obtained in under 200 seconds on easily reproducible equipment which can be built into a green energy battery management system, while the EIS process takes over two hours on prohibitively expensive laboratory equipment. This work validates PRBS as a fast and portable method of obtaining the impedance spectrum of Lithium Ion cells, which can then be used to obtain information about SoH of the BESS.\",\"PeriodicalId\":247617,\"journal\":{\"name\":\"International Journal of Smart Grid and Clean Energy\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Smart Grid and Clean Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12720/SGCE.9.2.346-356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart Grid and Clean Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/SGCE.9.2.346-356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Low Cost, Rapid Impedance Measurement Technique Suitable for Li-ion Health Diagnosis in Battery Energy Storage Systems
Battery energy storage is becoming a vital part of green energy systems. Prediction of the state of health of energy storage systems is difficult as it relies on a number of parameters. Pseudo Random Binary Sequence (PRBS) excitation of energy storage batteries has been shown to be a valid method of battery parameter identification for lead acid batteries [1]. The purpose of this work is to validate PRBS test data from a 3Ah LiFePO4 cell forming part of an EV battery-pack cell against Electrochemical Impedance Spectroscopy (EIS) data obtained from an industry-standard potentiostat (Solartron 1480). PRBS results are obtained in under 200 seconds on easily reproducible equipment which can be built into a green energy battery management system, while the EIS process takes over two hours on prohibitively expensive laboratory equipment. This work validates PRBS as a fast and portable method of obtaining the impedance spectrum of Lithium Ion cells, which can then be used to obtain information about SoH of the BESS.