通过基于软件的位翻转最小化来降低gpu的内存总线能耗

Alex Fallin, Martin Burtscher
{"title":"通过基于软件的位翻转最小化来降低gpu的内存总线能耗","authors":"Alex Fallin, Martin Burtscher","doi":"10.1109/MCHPC56545.2022.00008","DOIUrl":null,"url":null,"abstract":"Energy consumption is a major concern in high-performance computing. One important contributing factor is the number of times the wires are charged and discharged, i.e., how often they switch from ‘0’ to ‘1’ and vice versa. We describe a software technique to minimize this switching activity in GPUs, thereby lowering the energy usage. Our technique targets the memory bus, which comprises many high-capacitance wires that are frequently used. Our approach is to strategically change data values in the source code such that loading and storing them yields fewer bit flips. The new values are guaranteed to produce the same control flow and program output. Measurements on GPUs from two generations show that our technique allows programmers to save up to 9.3% of the whole-GPU energy consumption and 1.2% on average across eight graph-analytics CUDA codes without impacting performance.","PeriodicalId":171254,"journal":{"name":"2022 IEEE/ACM Workshop on Memory Centric High Performance Computing (MCHPC)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reducing Memory-Bus Energy Consumption of GPUs via Software-Based Bit-Flip Minimization\",\"authors\":\"Alex Fallin, Martin Burtscher\",\"doi\":\"10.1109/MCHPC56545.2022.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy consumption is a major concern in high-performance computing. One important contributing factor is the number of times the wires are charged and discharged, i.e., how often they switch from ‘0’ to ‘1’ and vice versa. We describe a software technique to minimize this switching activity in GPUs, thereby lowering the energy usage. Our technique targets the memory bus, which comprises many high-capacitance wires that are frequently used. Our approach is to strategically change data values in the source code such that loading and storing them yields fewer bit flips. The new values are guaranteed to produce the same control flow and program output. Measurements on GPUs from two generations show that our technique allows programmers to save up to 9.3% of the whole-GPU energy consumption and 1.2% on average across eight graph-analytics CUDA codes without impacting performance.\",\"PeriodicalId\":171254,\"journal\":{\"name\":\"2022 IEEE/ACM Workshop on Memory Centric High Performance Computing (MCHPC)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM Workshop on Memory Centric High Performance Computing (MCHPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCHPC56545.2022.00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM Workshop on Memory Centric High Performance Computing (MCHPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCHPC56545.2022.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

能源消耗是高性能计算中的一个主要问题。一个重要的影响因素是电线充电和放电的次数,即它们从“0”切换到“1”的频率,反之亦然。我们描述了一种软件技术,以尽量减少gpu中的这种切换活动,从而降低能源使用。我们的技术目标是存储总线,它由许多经常使用的高电容导线组成。我们的方法是策略性地改变源代码中的数据值,以便加载和存储它们产生更少的位翻转。新值保证产生相同的控制流和程序输出。对两代gpu的测量表明,我们的技术允许程序员在不影响性能的情况下节省高达9.3%的整个gpu能耗和平均节省1.2%的8个图形分析CUDA代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing Memory-Bus Energy Consumption of GPUs via Software-Based Bit-Flip Minimization
Energy consumption is a major concern in high-performance computing. One important contributing factor is the number of times the wires are charged and discharged, i.e., how often they switch from ‘0’ to ‘1’ and vice versa. We describe a software technique to minimize this switching activity in GPUs, thereby lowering the energy usage. Our technique targets the memory bus, which comprises many high-capacitance wires that are frequently used. Our approach is to strategically change data values in the source code such that loading and storing them yields fewer bit flips. The new values are guaranteed to produce the same control flow and program output. Measurements on GPUs from two generations show that our technique allows programmers to save up to 9.3% of the whole-GPU energy consumption and 1.2% on average across eight graph-analytics CUDA codes without impacting performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信