IV组和III-V组finfet和纳米线的建模和优化

V. Moroz, Lee Smith, Joanne Huang, Munkang Choi, T. Ma, Jie Liu, Yunqiang Zhang, Xi-Wei Lin, J. Kawa, Y. Saad
{"title":"IV组和III-V组finfet和纳米线的建模和优化","authors":"V. Moroz, Lee Smith, Joanne Huang, Munkang Choi, T. Ma, Jie Liu, Yunqiang Zhang, Xi-Wei Lin, J. Kawa, Y. Saad","doi":"10.1109/IEDM.2014.7047004","DOIUrl":null,"url":null,"abstract":"We described simulation methodologies involving a variety of modeling techniques applied to design and optimization of several key aspects of the 7nm and 5nm transistors and standard library cells. Analysis of channel material engineering for the 7nm FinFETs points to different trade-offs for the HP, SP, and LP leakage specs. Mechanical stability of the fins with high aspect ratio is evaluated as a major factor determining fin shape engineering and transitions from bulk FinFET to SOI FinFET and then to NW. Comparative analysis of the 10 track high 2-input NAND library cells based on different channel materials, different spacer materials, and different transistor architectures suggests that the largest benefits of 3.6x speed gain with 5x reduction in power consumption is achieved by switching from 7nm Si baseline FinFET process to 5nm vertical Si NWs. Within lateral transistors at 7nm design rules, transition from fins to lateral NWs and replacing nitride spacers with oxide spacers offer significant speed/power advantage. The channel material engineering brings the weakest advantage on the library cell level.","PeriodicalId":309325,"journal":{"name":"2014 IEEE International Electron Devices Meeting","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Modeling and optimization of group IV and III–V FinFETs and nano-wires\",\"authors\":\"V. Moroz, Lee Smith, Joanne Huang, Munkang Choi, T. Ma, Jie Liu, Yunqiang Zhang, Xi-Wei Lin, J. Kawa, Y. Saad\",\"doi\":\"10.1109/IEDM.2014.7047004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We described simulation methodologies involving a variety of modeling techniques applied to design and optimization of several key aspects of the 7nm and 5nm transistors and standard library cells. Analysis of channel material engineering for the 7nm FinFETs points to different trade-offs for the HP, SP, and LP leakage specs. Mechanical stability of the fins with high aspect ratio is evaluated as a major factor determining fin shape engineering and transitions from bulk FinFET to SOI FinFET and then to NW. Comparative analysis of the 10 track high 2-input NAND library cells based on different channel materials, different spacer materials, and different transistor architectures suggests that the largest benefits of 3.6x speed gain with 5x reduction in power consumption is achieved by switching from 7nm Si baseline FinFET process to 5nm vertical Si NWs. Within lateral transistors at 7nm design rules, transition from fins to lateral NWs and replacing nitride spacers with oxide spacers offer significant speed/power advantage. The channel material engineering brings the weakest advantage on the library cell level.\",\"PeriodicalId\":309325,\"journal\":{\"name\":\"2014 IEEE International Electron Devices Meeting\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Electron Devices Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2014.7047004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2014.7047004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

我们描述了模拟方法,包括各种建模技术,用于设计和优化7nm和5nm晶体管和标准库单元的几个关键方面。对7nm finfet通道材料工程的分析指出了HP、SP和LP泄漏规格的不同权衡。高展弦比鳍片的机械稳定性被认为是决定鳍形工程和从体积FinFET过渡到SOI FinFET再到NW的主要因素。对基于不同沟道材料、不同间隔材料和不同晶体管架构的10个轨道高2输入NAND库单元的比较分析表明,从7nm Si基准FinFET工艺切换到5nm垂直Si NWs工艺,可以实现3.6倍的速度增益和5倍的功耗降低。在7nm的横向晶体管设计规则中,从翅片过渡到横向NWs以及用氧化物间隔片取代氮化间隔片可以提供显着的速度/功率优势。通道材料工程在库单元水平上的优势最弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and optimization of group IV and III–V FinFETs and nano-wires
We described simulation methodologies involving a variety of modeling techniques applied to design and optimization of several key aspects of the 7nm and 5nm transistors and standard library cells. Analysis of channel material engineering for the 7nm FinFETs points to different trade-offs for the HP, SP, and LP leakage specs. Mechanical stability of the fins with high aspect ratio is evaluated as a major factor determining fin shape engineering and transitions from bulk FinFET to SOI FinFET and then to NW. Comparative analysis of the 10 track high 2-input NAND library cells based on different channel materials, different spacer materials, and different transistor architectures suggests that the largest benefits of 3.6x speed gain with 5x reduction in power consumption is achieved by switching from 7nm Si baseline FinFET process to 5nm vertical Si NWs. Within lateral transistors at 7nm design rules, transition from fins to lateral NWs and replacing nitride spacers with oxide spacers offer significant speed/power advantage. The channel material engineering brings the weakest advantage on the library cell level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信