一种绝对稳定任意高阶隐式数值积分方法及其在互连电路时域仿真中的应用

E. Gad, M. Nakhla, R. Achar, Yinghong Zhou
{"title":"一种绝对稳定任意高阶隐式数值积分方法及其在互连电路时域仿真中的应用","authors":"E. Gad, M. Nakhla, R. Achar, Yinghong Zhou","doi":"10.1109/SPI.2007.4512246","DOIUrl":null,"url":null,"abstract":"This paper presents an outline of a new integration method and describes the results of its application in simulating electric circuits in the time-domain. The proposed method does not suffer from the stability vs. order limitation of classical linear multistep methods. Hence, it enables using arbitrarily high- order approximations to the circuit waveforms while maintaining the stability over the entire left side of the complex-plane (A-stability).","PeriodicalId":206352,"journal":{"name":"2007 IEEE Workshop on Signal Propagation on Interconnects","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An absolutely-stable arbitrarily high-order implicit numerical integration method and its application to the time-domain simulation of interconnect circuits\",\"authors\":\"E. Gad, M. Nakhla, R. Achar, Yinghong Zhou\",\"doi\":\"10.1109/SPI.2007.4512246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an outline of a new integration method and describes the results of its application in simulating electric circuits in the time-domain. The proposed method does not suffer from the stability vs. order limitation of classical linear multistep methods. Hence, it enables using arbitrarily high- order approximations to the circuit waveforms while maintaining the stability over the entire left side of the complex-plane (A-stability).\",\"PeriodicalId\":206352,\"journal\":{\"name\":\"2007 IEEE Workshop on Signal Propagation on Interconnects\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Workshop on Signal Propagation on Interconnects\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPI.2007.4512246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Signal Propagation on Interconnects","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPI.2007.4512246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文概述了一种新的积分方法,并描述了其在时域电路仿真中的应用结果。该方法不存在经典线性多步骤方法的稳定性和阶数限制。因此,它可以使用任意高阶近似电路波形,同时保持整个复杂平面左侧的稳定性(a稳定性)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An absolutely-stable arbitrarily high-order implicit numerical integration method and its application to the time-domain simulation of interconnect circuits
This paper presents an outline of a new integration method and describes the results of its application in simulating electric circuits in the time-domain. The proposed method does not suffer from the stability vs. order limitation of classical linear multistep methods. Hence, it enables using arbitrarily high- order approximations to the circuit waveforms while maintaining the stability over the entire left side of the complex-plane (A-stability).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信