{"title":"基于异构模型的嵌入式系统协同仿真","authors":"Seyed-Hosein Attarzadeh-Niaki, I. Sander","doi":"10.1109/SIES.2011.5953667","DOIUrl":null,"url":null,"abstract":"New design methodologies and modeling frameworks are required to provide a solution for integrating legacy code and IP models in order to be accepted in the industry. To tackle this problem, we introduce the concept of wrappers in the context of a formal heterogeneous embedded system modeling framework. The formalism is based on the language-independent concept of models of computation. Wrappers enable the framework to co-simulate/co-execute with external models which might be legacy code, an IP block, or an implementation of a partially refined system. They are defined formally in order to keep the analyzability of the original framework and also enable automations such as generation of model wrappers and co-simulation interfaces. As a proof of concept, three wrappers for models in different abstraction levels are introduced and implemented for two case studies.","PeriodicalId":391594,"journal":{"name":"2011 6th IEEE International Symposium on Industrial and Embedded Systems","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Co-simulation of embedded systems in a heterogeneous MoC-based modeling framework\",\"authors\":\"Seyed-Hosein Attarzadeh-Niaki, I. Sander\",\"doi\":\"10.1109/SIES.2011.5953667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New design methodologies and modeling frameworks are required to provide a solution for integrating legacy code and IP models in order to be accepted in the industry. To tackle this problem, we introduce the concept of wrappers in the context of a formal heterogeneous embedded system modeling framework. The formalism is based on the language-independent concept of models of computation. Wrappers enable the framework to co-simulate/co-execute with external models which might be legacy code, an IP block, or an implementation of a partially refined system. They are defined formally in order to keep the analyzability of the original framework and also enable automations such as generation of model wrappers and co-simulation interfaces. As a proof of concept, three wrappers for models in different abstraction levels are introduced and implemented for two case studies.\",\"PeriodicalId\":391594,\"journal\":{\"name\":\"2011 6th IEEE International Symposium on Industrial and Embedded Systems\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th IEEE International Symposium on Industrial and Embedded Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIES.2011.5953667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th IEEE International Symposium on Industrial and Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIES.2011.5953667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Co-simulation of embedded systems in a heterogeneous MoC-based modeling framework
New design methodologies and modeling frameworks are required to provide a solution for integrating legacy code and IP models in order to be accepted in the industry. To tackle this problem, we introduce the concept of wrappers in the context of a formal heterogeneous embedded system modeling framework. The formalism is based on the language-independent concept of models of computation. Wrappers enable the framework to co-simulate/co-execute with external models which might be legacy code, an IP block, or an implementation of a partially refined system. They are defined formally in order to keep the analyzability of the original framework and also enable automations such as generation of model wrappers and co-simulation interfaces. As a proof of concept, three wrappers for models in different abstraction levels are introduced and implemented for two case studies.