双参数指数对数-logistic分布的频域参数估计

A. Chaudhary
{"title":"双参数指数对数-logistic分布的频域参数估计","authors":"A. Chaudhary","doi":"10.3126/NCCJ.V4I1.24727","DOIUrl":null,"url":null,"abstract":"In this paper, we have considered frequentist parameter estimation of two parameter exponentiated log-logistic distribution based on a complete sample. The parameters are estimated using a likelihood-based classical inferential procedure. This study has tried to compute MLEs along with their asymptotic confidence interval, contour plot and standard errors. The K-S test statistic, Quantile-Quantile (QQ) and Probability-Probability (PP) plots are used to check the validity of the model. All the computations are performed in R software. Areal data set is considered for illustration of the purposed inferential procedures.","PeriodicalId":403873,"journal":{"name":"NCC Journal","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Frequentist Parameter Estimation of Two-Parameter Exponentiated Log-logistic Distribution BB\",\"authors\":\"A. Chaudhary\",\"doi\":\"10.3126/NCCJ.V4I1.24727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have considered frequentist parameter estimation of two parameter exponentiated log-logistic distribution based on a complete sample. The parameters are estimated using a likelihood-based classical inferential procedure. This study has tried to compute MLEs along with their asymptotic confidence interval, contour plot and standard errors. The K-S test statistic, Quantile-Quantile (QQ) and Probability-Probability (PP) plots are used to check the validity of the model. All the computations are performed in R software. Areal data set is considered for illustration of the purposed inferential procedures.\",\"PeriodicalId\":403873,\"journal\":{\"name\":\"NCC Journal\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NCC Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/NCCJ.V4I1.24727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NCC Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/NCCJ.V4I1.24727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了基于完全样本的双参数指数型对数-logistic分布的频率参数估计。使用基于似然的经典推理程序估计参数。本研究尝试计算MLEs及其渐近置信区间、等高线图和标准误差。采用K-S检验统计量、分位数-分位数(QQ)和概率-概率(PP)图来检验模型的有效性。所有计算均在R软件中完成。实际数据集被认为是为了说明目的推理过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequentist Parameter Estimation of Two-Parameter Exponentiated Log-logistic Distribution BB
In this paper, we have considered frequentist parameter estimation of two parameter exponentiated log-logistic distribution based on a complete sample. The parameters are estimated using a likelihood-based classical inferential procedure. This study has tried to compute MLEs along with their asymptotic confidence interval, contour plot and standard errors. The K-S test statistic, Quantile-Quantile (QQ) and Probability-Probability (PP) plots are used to check the validity of the model. All the computations are performed in R software. Areal data set is considered for illustration of the purposed inferential procedures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信