通过公平-效用权衡度量评估公平机器学习策略

Luiz Fernando F. P. de Lima, D. R. D. Ricarte, C. Siebra
{"title":"通过公平-效用权衡度量评估公平机器学习策略","authors":"Luiz Fernando F. P. de Lima, D. R. D. Ricarte, C. Siebra","doi":"10.5753/eniac.2021.18288","DOIUrl":null,"url":null,"abstract":"Due to the increasing use of artificial intelligence for decision making and the observation of biased decisions in many applications, researchers are investigating solutions that attempt to build fairer models that do not reproduce discrimination. Some of the explored strategies are based on adversarial learning to achieve fairness in machine learning by encoding fairness constraints through an adversarial model. Moreover, it is usual for each proposal to assess its model with a specific metric, making comparing current approaches a complex task. In that sense, we defined a utility and fairness trade-off metric. We assessed 15 fair model implementations and a baseline model using this metric, providing a systemically comparative ruler for other approaches.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessing Fair Machine Learning Strategies Through a Fairness-Utility Trade-off Metric\",\"authors\":\"Luiz Fernando F. P. de Lima, D. R. D. Ricarte, C. Siebra\",\"doi\":\"10.5753/eniac.2021.18288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the increasing use of artificial intelligence for decision making and the observation of biased decisions in many applications, researchers are investigating solutions that attempt to build fairer models that do not reproduce discrimination. Some of the explored strategies are based on adversarial learning to achieve fairness in machine learning by encoding fairness constraints through an adversarial model. Moreover, it is usual for each proposal to assess its model with a specific metric, making comparing current approaches a complex task. In that sense, we defined a utility and fairness trade-off metric. We assessed 15 fair model implementations and a baseline model using this metric, providing a systemically comparative ruler for other approaches.\",\"PeriodicalId\":318676,\"journal\":{\"name\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2021.18288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于越来越多地使用人工智能进行决策,并且在许多应用中观察到有偏见的决策,研究人员正在研究试图建立不会再现歧视的更公平模型的解决方案。探索的一些策略是基于对抗性学习,通过对抗性模型编码公平约束来实现机器学习中的公平性。此外,每个提案通常使用特定的度量来评估其模型,这使得比较当前的方法成为一项复杂的任务。从这个意义上说,我们定义了一个效用和公平权衡指标。我们使用该度量评估了15个公平模型实现和一个基线模型,为其他方法提供了一个系统的比较标尺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing Fair Machine Learning Strategies Through a Fairness-Utility Trade-off Metric
Due to the increasing use of artificial intelligence for decision making and the observation of biased decisions in many applications, researchers are investigating solutions that attempt to build fairer models that do not reproduce discrimination. Some of the explored strategies are based on adversarial learning to achieve fairness in machine learning by encoding fairness constraints through an adversarial model. Moreover, it is usual for each proposal to assess its model with a specific metric, making comparing current approaches a complex task. In that sense, we defined a utility and fairness trade-off metric. We assessed 15 fair model implementations and a baseline model using this metric, providing a systemically comparative ruler for other approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信