{"title":"基于杂化纳米介质碳纳米管薄膜晶体管的低压电子学","authors":"V. Pecunia, Luis Portilla","doi":"10.1109/FLEPS49123.2020.9239544","DOIUrl":null,"url":null,"abstract":"Solution-processable electronics has been widely hailed as an attractive platform for emerging application domains such as the Internet of Things and for place-and-forget devices for health monitoring. This study specifically addresses the need for easy-to-make solution-processable electronics that can function with the low supply voltage available from flexible batteries or compact energy harvesters. By combining printed semiconducting single-walled carbon nanotube networks (SWCNTNs) with a hybrid nanodielectric, thin film transistors (TFTs) are realized that are capable of operating with a supply voltage in the range of 1 V. The adopted device stack enables balanced ambipolar characteristics, with good symmetry in their key device parameters and with carrier mobility values in the range of 10–15 cm2 V−1 s−1. On the basis of their well-conditioned ambipolar characteristics, these TFTs are integrated in CMOS fashion into inverter gates. Such inverters can operate with a supply voltage of 1 V, exhibiting complementary-like characteristics with adequate symmetry and with a gain of 35 V/V. In virtue of its ability to deliver low-voltage circuit operation, this approach constitutes a promising avenue for solution-processable electronics that can address the low-voltage requirements of emerging application domains.","PeriodicalId":101496,"journal":{"name":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low-Voltage Electronics Based on Carbon Nanotube Thin-Film Transistors with Hybrid Nanodielectric\",\"authors\":\"V. Pecunia, Luis Portilla\",\"doi\":\"10.1109/FLEPS49123.2020.9239544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solution-processable electronics has been widely hailed as an attractive platform for emerging application domains such as the Internet of Things and for place-and-forget devices for health monitoring. This study specifically addresses the need for easy-to-make solution-processable electronics that can function with the low supply voltage available from flexible batteries or compact energy harvesters. By combining printed semiconducting single-walled carbon nanotube networks (SWCNTNs) with a hybrid nanodielectric, thin film transistors (TFTs) are realized that are capable of operating with a supply voltage in the range of 1 V. The adopted device stack enables balanced ambipolar characteristics, with good symmetry in their key device parameters and with carrier mobility values in the range of 10–15 cm2 V−1 s−1. On the basis of their well-conditioned ambipolar characteristics, these TFTs are integrated in CMOS fashion into inverter gates. Such inverters can operate with a supply voltage of 1 V, exhibiting complementary-like characteristics with adequate symmetry and with a gain of 35 V/V. In virtue of its ability to deliver low-voltage circuit operation, this approach constitutes a promising avenue for solution-processable electronics that can address the low-voltage requirements of emerging application domains.\",\"PeriodicalId\":101496,\"journal\":{\"name\":\"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FLEPS49123.2020.9239544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FLEPS49123.2020.9239544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-Voltage Electronics Based on Carbon Nanotube Thin-Film Transistors with Hybrid Nanodielectric
Solution-processable electronics has been widely hailed as an attractive platform for emerging application domains such as the Internet of Things and for place-and-forget devices for health monitoring. This study specifically addresses the need for easy-to-make solution-processable electronics that can function with the low supply voltage available from flexible batteries or compact energy harvesters. By combining printed semiconducting single-walled carbon nanotube networks (SWCNTNs) with a hybrid nanodielectric, thin film transistors (TFTs) are realized that are capable of operating with a supply voltage in the range of 1 V. The adopted device stack enables balanced ambipolar characteristics, with good symmetry in their key device parameters and with carrier mobility values in the range of 10–15 cm2 V−1 s−1. On the basis of their well-conditioned ambipolar characteristics, these TFTs are integrated in CMOS fashion into inverter gates. Such inverters can operate with a supply voltage of 1 V, exhibiting complementary-like characteristics with adequate symmetry and with a gain of 35 V/V. In virtue of its ability to deliver low-voltage circuit operation, this approach constitutes a promising avenue for solution-processable electronics that can address the low-voltage requirements of emerging application domains.