{"title":"BELEX15的动态风险值估计","authors":"E. Nikolić-Đorić, D. Đorić","doi":"10.51936/odxg4832","DOIUrl":null,"url":null,"abstract":"This paper uses RiskMetrics, GARCH and IGARCH models to calculate daily VaR for Belgrade Stock Exchange index BELEX15 returns based on the normal and Student t innovation distribution. In the case of GARCH and IGARCH models VaR values are obtained applying Extreme Value Theory on the standardized residuals. The Kupiec's LR statistics was used to test the accuracy of risk measurement models. The main conclusions are: (1) when modelling value-at-risk it is very important to have a good model for volatility of stock returns; (2) both stationary and integrated GARCH models outperform RiskMetrics in estimating VaR; (3) although long memory volatility is present in the BELEX15 index, IGARCH models cannot outperform GARCH type models in VaR evaluations for this index.","PeriodicalId":242585,"journal":{"name":"Advances in Methodology and Statistics","volume":"277 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Dynamic value at risk estimation for BELEX15\",\"authors\":\"E. Nikolić-Đorić, D. Đorić\",\"doi\":\"10.51936/odxg4832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses RiskMetrics, GARCH and IGARCH models to calculate daily VaR for Belgrade Stock Exchange index BELEX15 returns based on the normal and Student t innovation distribution. In the case of GARCH and IGARCH models VaR values are obtained applying Extreme Value Theory on the standardized residuals. The Kupiec's LR statistics was used to test the accuracy of risk measurement models. The main conclusions are: (1) when modelling value-at-risk it is very important to have a good model for volatility of stock returns; (2) both stationary and integrated GARCH models outperform RiskMetrics in estimating VaR; (3) although long memory volatility is present in the BELEX15 index, IGARCH models cannot outperform GARCH type models in VaR evaluations for this index.\",\"PeriodicalId\":242585,\"journal\":{\"name\":\"Advances in Methodology and Statistics\",\"volume\":\"277 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Methodology and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51936/odxg4832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Methodology and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51936/odxg4832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper uses RiskMetrics, GARCH and IGARCH models to calculate daily VaR for Belgrade Stock Exchange index BELEX15 returns based on the normal and Student t innovation distribution. In the case of GARCH and IGARCH models VaR values are obtained applying Extreme Value Theory on the standardized residuals. The Kupiec's LR statistics was used to test the accuracy of risk measurement models. The main conclusions are: (1) when modelling value-at-risk it is very important to have a good model for volatility of stock returns; (2) both stationary and integrated GARCH models outperform RiskMetrics in estimating VaR; (3) although long memory volatility is present in the BELEX15 index, IGARCH models cannot outperform GARCH type models in VaR evaluations for this index.