PADE:高性能的砂矿机,通过高维数据学习自动提取和评估数据路径

Samuel I. Ward, Duo Ding, D. Pan
{"title":"PADE:高性能的砂矿机,通过高维数据学习自动提取和评估数据路径","authors":"Samuel I. Ward, Duo Ding, D. Pan","doi":"10.1145/2228360.2228497","DOIUrl":null,"url":null,"abstract":"This work presents PADE, a new placement flow with automatic datapath extraction and evaluation. PADE applies novel data learning techniques to train, predict, and evaluate potential datapaths using high-dimensional data such as netlist symmetrical structures, initial placement hints and relative area. Extracted datapaths are mapped to bit-stack structures that are aligned and simultaneously placed with the random logic using SAPT [1], the SAPT, a placer built on top of SimPL [2]. Results show at least 7% average total Half-Perimeter Wire Length (HPWL) and 12% Steiner Wire Length (StWL) improvements on industrial hybrid benchmarks and at least 2% average total HPWL and 3% StWL improvements on ISPD 2005 contest benchmarks. To the best of our knowledge, this is the first attempt to link data learning, datapath extraction with evaluation, and placement and has the tremendous potential for pushing placement state-of-the-art for modern circuits which have datapath and random logics.","PeriodicalId":263599,"journal":{"name":"DAC Design Automation Conference 2012","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"PADE: A high-performance placer with automatic datapath extraction and evaluation through high-dimensional data learning\",\"authors\":\"Samuel I. Ward, Duo Ding, D. Pan\",\"doi\":\"10.1145/2228360.2228497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents PADE, a new placement flow with automatic datapath extraction and evaluation. PADE applies novel data learning techniques to train, predict, and evaluate potential datapaths using high-dimensional data such as netlist symmetrical structures, initial placement hints and relative area. Extracted datapaths are mapped to bit-stack structures that are aligned and simultaneously placed with the random logic using SAPT [1], the SAPT, a placer built on top of SimPL [2]. Results show at least 7% average total Half-Perimeter Wire Length (HPWL) and 12% Steiner Wire Length (StWL) improvements on industrial hybrid benchmarks and at least 2% average total HPWL and 3% StWL improvements on ISPD 2005 contest benchmarks. To the best of our knowledge, this is the first attempt to link data learning, datapath extraction with evaluation, and placement and has the tremendous potential for pushing placement state-of-the-art for modern circuits which have datapath and random logics.\",\"PeriodicalId\":263599,\"journal\":{\"name\":\"DAC Design Automation Conference 2012\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DAC Design Automation Conference 2012\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2228360.2228497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAC Design Automation Conference 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2228360.2228497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

本文提出了一种具有自动数据路径提取和评估功能的新型放置流程PADE。PADE应用新颖的数据学习技术,使用高维数据(如网表对称结构、初始位置提示和相对面积)来训练、预测和评估潜在的数据路径。提取的数据路径被映射到位堆栈结构,这些位堆栈结构使用SAPT[1]与随机逻辑对齐并同时放置,SAPT是建立在SimPL[2]之上的放砂器。结果表明,在工业混合基准测试中,平均总半周线长度(HPWL)至少提高7%,斯坦纳线长度(StWL)提高12%;在ISPD 2005竞赛基准测试中,平均总半周线长度(HPWL)至少提高2%,平均总半周线长度(StWL)至少提高3%。据我们所知,这是第一次尝试将数据学习,数据路径提取与评估和放置联系起来,并且具有巨大的潜力,可以推动具有数据路径和随机逻辑的现代电路的最先进的放置技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PADE: A high-performance placer with automatic datapath extraction and evaluation through high-dimensional data learning
This work presents PADE, a new placement flow with automatic datapath extraction and evaluation. PADE applies novel data learning techniques to train, predict, and evaluate potential datapaths using high-dimensional data such as netlist symmetrical structures, initial placement hints and relative area. Extracted datapaths are mapped to bit-stack structures that are aligned and simultaneously placed with the random logic using SAPT [1], the SAPT, a placer built on top of SimPL [2]. Results show at least 7% average total Half-Perimeter Wire Length (HPWL) and 12% Steiner Wire Length (StWL) improvements on industrial hybrid benchmarks and at least 2% average total HPWL and 3% StWL improvements on ISPD 2005 contest benchmarks. To the best of our knowledge, this is the first attempt to link data learning, datapath extraction with evaluation, and placement and has the tremendous potential for pushing placement state-of-the-art for modern circuits which have datapath and random logics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信