{"title":"用单脉冲测试模式分析周期移位扫描链失效","authors":"Paulraj Eric, C. Choong, Yiang Won Chai","doi":"10.1109/IPFA47161.2019.8984902","DOIUrl":null,"url":null,"abstract":"Conventional scan chain test pattern of \"0011\" repeating data is widely used to tackle scan chain failures such as stuck-at and transition failures using Laser Voltage Imaging’s (LVI) fundamental and second harmonic frequency approaches. However, this \"0011\" scan chain test pattern when combined with LVI technique is ineffective in isolating cycle-shift scan chain failures even with the integration of a lock-in amplifier which is also known as phase LVI. This is because phase LVI isolation technique requires detailed understanding of the scan chain design and fault isolation for all types of cycle-shift scan chain failing signatures is not possible using this technique. In this paper, we propose a technique to effectively isolate the failing flop for an entire range of cycle-shift scan chain failures using a novel single pulse chain test pattern paired with Laser Voltage Probing (LVP) that overcomes the challenges faced by phase LVI.","PeriodicalId":169775,"journal":{"name":"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cycle-Shift Scan Chain Failure Analysis Using Single Pulse Test Pattern\",\"authors\":\"Paulraj Eric, C. Choong, Yiang Won Chai\",\"doi\":\"10.1109/IPFA47161.2019.8984902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional scan chain test pattern of \\\"0011\\\" repeating data is widely used to tackle scan chain failures such as stuck-at and transition failures using Laser Voltage Imaging’s (LVI) fundamental and second harmonic frequency approaches. However, this \\\"0011\\\" scan chain test pattern when combined with LVI technique is ineffective in isolating cycle-shift scan chain failures even with the integration of a lock-in amplifier which is also known as phase LVI. This is because phase LVI isolation technique requires detailed understanding of the scan chain design and fault isolation for all types of cycle-shift scan chain failing signatures is not possible using this technique. In this paper, we propose a technique to effectively isolate the failing flop for an entire range of cycle-shift scan chain failures using a novel single pulse chain test pattern paired with Laser Voltage Probing (LVP) that overcomes the challenges faced by phase LVI.\",\"PeriodicalId\":169775,\"journal\":{\"name\":\"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA47161.2019.8984902\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA47161.2019.8984902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cycle-Shift Scan Chain Failure Analysis Using Single Pulse Test Pattern
Conventional scan chain test pattern of "0011" repeating data is widely used to tackle scan chain failures such as stuck-at and transition failures using Laser Voltage Imaging’s (LVI) fundamental and second harmonic frequency approaches. However, this "0011" scan chain test pattern when combined with LVI technique is ineffective in isolating cycle-shift scan chain failures even with the integration of a lock-in amplifier which is also known as phase LVI. This is because phase LVI isolation technique requires detailed understanding of the scan chain design and fault isolation for all types of cycle-shift scan chain failing signatures is not possible using this technique. In this paper, we propose a technique to effectively isolate the failing flop for an entire range of cycle-shift scan chain failures using a novel single pulse chain test pattern paired with Laser Voltage Probing (LVP) that overcomes the challenges faced by phase LVI.