专家系统在商业生态系统交互问题上的方法论支持

K. Simonov, V. Kuimov, M. V. Kobalinsky, S. V. Kirillova, A. Zotin, M. Kurako, A. Matsulev
{"title":"专家系统在商业生态系统交互问题上的方法论支持","authors":"K. Simonov, V. Kuimov, M. V. Kobalinsky, S. V. Kirillova, A. Zotin, M. Kurako, A. Matsulev","doi":"10.34219/2078-8320-2021-12-4-47-53","DOIUrl":null,"url":null,"abstract":"The paper discusses modern approaches and digital transformations in business models and interactions. In this regard for a quantitative description of interactions in ecosystems a variant of methodological support based on neural networks is proposed for fast nonlinear multiparametric regression of large data sets within the projected expert system. The possibility of effective solution of the problem of filling gaps in the observational data arrays and processing of not precisely specified information is shown. This approach is proposed for solving predictive problems in the problem of interaction of objects of interest in business ecosystems. The article was prepared within the framework of the Grant of the RFBR and the Government of the Krasnoyarsk Territory No. 20-410-242916 / 20 r_mk Krasnoyarsk.","PeriodicalId":299496,"journal":{"name":"Informatization and communication","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methodological support of the expert system in the problem of interaction of business ecosystems\",\"authors\":\"K. Simonov, V. Kuimov, M. V. Kobalinsky, S. V. Kirillova, A. Zotin, M. Kurako, A. Matsulev\",\"doi\":\"10.34219/2078-8320-2021-12-4-47-53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper discusses modern approaches and digital transformations in business models and interactions. In this regard for a quantitative description of interactions in ecosystems a variant of methodological support based on neural networks is proposed for fast nonlinear multiparametric regression of large data sets within the projected expert system. The possibility of effective solution of the problem of filling gaps in the observational data arrays and processing of not precisely specified information is shown. This approach is proposed for solving predictive problems in the problem of interaction of objects of interest in business ecosystems. The article was prepared within the framework of the Grant of the RFBR and the Government of the Krasnoyarsk Territory No. 20-410-242916 / 20 r_mk Krasnoyarsk.\",\"PeriodicalId\":299496,\"journal\":{\"name\":\"Informatization and communication\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatization and communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34219/2078-8320-2021-12-4-47-53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatization and communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34219/2078-8320-2021-12-4-47-53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了商业模式和交互中的现代方法和数字化转型。在这方面,对于生态系统中相互作用的定量描述,提出了一种基于神经网络的方法支持变体,用于预测专家系统内大型数据集的快速非线性多参数回归。指出了有效解决观测数据阵列中空白的填补和未精确指定信息处理问题的可能性。该方法是为解决商业生态系统中感兴趣对象交互问题中的预测问题而提出的。这一条款是在第20-410-242916 / 20 r_mk克拉斯诺亚尔斯克号联邦联邦调查局和克拉斯诺亚尔斯克地区政府的赠款框架内编写的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methodological support of the expert system in the problem of interaction of business ecosystems
The paper discusses modern approaches and digital transformations in business models and interactions. In this regard for a quantitative description of interactions in ecosystems a variant of methodological support based on neural networks is proposed for fast nonlinear multiparametric regression of large data sets within the projected expert system. The possibility of effective solution of the problem of filling gaps in the observational data arrays and processing of not precisely specified information is shown. This approach is proposed for solving predictive problems in the problem of interaction of objects of interest in business ecosystems. The article was prepared within the framework of the Grant of the RFBR and the Government of the Krasnoyarsk Territory No. 20-410-242916 / 20 r_mk Krasnoyarsk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信