K. Simonov, V. Kuimov, M. V. Kobalinsky, S. V. Kirillova, A. Zotin, M. Kurako, A. Matsulev
{"title":"专家系统在商业生态系统交互问题上的方法论支持","authors":"K. Simonov, V. Kuimov, M. V. Kobalinsky, S. V. Kirillova, A. Zotin, M. Kurako, A. Matsulev","doi":"10.34219/2078-8320-2021-12-4-47-53","DOIUrl":null,"url":null,"abstract":"The paper discusses modern approaches and digital transformations in business models and interactions. In this regard for a quantitative description of interactions in ecosystems a variant of methodological support based on neural networks is proposed for fast nonlinear multiparametric regression of large data sets within the projected expert system. The possibility of effective solution of the problem of filling gaps in the observational data arrays and processing of not precisely specified information is shown. This approach is proposed for solving predictive problems in the problem of interaction of objects of interest in business ecosystems. The article was prepared within the framework of the Grant of the RFBR and the Government of the Krasnoyarsk Territory No. 20-410-242916 / 20 r_mk Krasnoyarsk.","PeriodicalId":299496,"journal":{"name":"Informatization and communication","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methodological support of the expert system in the problem of interaction of business ecosystems\",\"authors\":\"K. Simonov, V. Kuimov, M. V. Kobalinsky, S. V. Kirillova, A. Zotin, M. Kurako, A. Matsulev\",\"doi\":\"10.34219/2078-8320-2021-12-4-47-53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper discusses modern approaches and digital transformations in business models and interactions. In this regard for a quantitative description of interactions in ecosystems a variant of methodological support based on neural networks is proposed for fast nonlinear multiparametric regression of large data sets within the projected expert system. The possibility of effective solution of the problem of filling gaps in the observational data arrays and processing of not precisely specified information is shown. This approach is proposed for solving predictive problems in the problem of interaction of objects of interest in business ecosystems. The article was prepared within the framework of the Grant of the RFBR and the Government of the Krasnoyarsk Territory No. 20-410-242916 / 20 r_mk Krasnoyarsk.\",\"PeriodicalId\":299496,\"journal\":{\"name\":\"Informatization and communication\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatization and communication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34219/2078-8320-2021-12-4-47-53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatization and communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34219/2078-8320-2021-12-4-47-53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Methodological support of the expert system in the problem of interaction of business ecosystems
The paper discusses modern approaches and digital transformations in business models and interactions. In this regard for a quantitative description of interactions in ecosystems a variant of methodological support based on neural networks is proposed for fast nonlinear multiparametric regression of large data sets within the projected expert system. The possibility of effective solution of the problem of filling gaps in the observational data arrays and processing of not precisely specified information is shown. This approach is proposed for solving predictive problems in the problem of interaction of objects of interest in business ecosystems. The article was prepared within the framework of the Grant of the RFBR and the Government of the Krasnoyarsk Territory No. 20-410-242916 / 20 r_mk Krasnoyarsk.