利用CNN识别土耳其语下棋指令

Y. Kutlu, Gizem Karaca
{"title":"利用CNN识别土耳其语下棋指令","authors":"Y. Kutlu, Gizem Karaca","doi":"10.54856/jiswa.202205211","DOIUrl":null,"url":null,"abstract":"A platform has been created that allows playing chess with Turkish voice commands. The aim of this study is to enable individuals with limited movement abilities as a result of congenital reasons or a certain disease or accident to play chess and perform a social activity without the help of another person, and to be rehabilitated at the same time. It consists of three parts: Chess module, Human-computer interaction module and Artificial Intelligence module. 29 words have been determined to provide movement in the game on the platform. Voice recordings from 151 people, 86 men and 65 women, were used. Feature selection was made on 43790 voice recordings by using mel frequency cepstral coefficients (MFCC) and gammatone cepstral coefficients (GTCC) methods. The results obtained were classified using the traditional CNN model. The data obtained after using MFCC and GTCC methods were used as inputs in the CNN model. In addition, the data obtained by the two methods were combined and trained in the model. Depending on the methods used in the created model, 83% to 85.9% results were obtained. It was determined that the results obtained using the MFCC method were more successful.","PeriodicalId":112412,"journal":{"name":"Journal of Intelligent Systems with Applications","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recognition of Turkish Command to Play Chess Game Using CNN\",\"authors\":\"Y. Kutlu, Gizem Karaca\",\"doi\":\"10.54856/jiswa.202205211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A platform has been created that allows playing chess with Turkish voice commands. The aim of this study is to enable individuals with limited movement abilities as a result of congenital reasons or a certain disease or accident to play chess and perform a social activity without the help of another person, and to be rehabilitated at the same time. It consists of three parts: Chess module, Human-computer interaction module and Artificial Intelligence module. 29 words have been determined to provide movement in the game on the platform. Voice recordings from 151 people, 86 men and 65 women, were used. Feature selection was made on 43790 voice recordings by using mel frequency cepstral coefficients (MFCC) and gammatone cepstral coefficients (GTCC) methods. The results obtained were classified using the traditional CNN model. The data obtained after using MFCC and GTCC methods were used as inputs in the CNN model. In addition, the data obtained by the two methods were combined and trained in the model. Depending on the methods used in the created model, 83% to 85.9% results were obtained. It was determined that the results obtained using the MFCC method were more successful.\",\"PeriodicalId\":112412,\"journal\":{\"name\":\"Journal of Intelligent Systems with Applications\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54856/jiswa.202205211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54856/jiswa.202205211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

一个允许用土耳其语语音指令下棋的平台已经创建。本研究的目的是使由于先天原因或某种疾病或事故导致的运动能力有限的个人能够在没有他人帮助的情况下下棋和进行社会活动,同时得到康复。它由三部分组成:象棋模块、人机交互模块和人工智能模块。29个单词已确定提供移动平台上的游戏。研究人员使用了151人的录音,其中包括86名男性和65名女性。采用mel频率倒谱系数(MFCC)和γ酮倒谱系数(GTCC)方法对43790段录音进行特征选择。使用传统的CNN模型对得到的结果进行分类。使用MFCC和GTCC方法获得的数据作为CNN模型的输入。此外,将两种方法获得的数据组合在模型中进行训练。根据所创建的模型中使用的方法,可以获得83%到85.9%的结果。结果表明,用MFCC法得到的结果是比较成功的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition of Turkish Command to Play Chess Game Using CNN
A platform has been created that allows playing chess with Turkish voice commands. The aim of this study is to enable individuals with limited movement abilities as a result of congenital reasons or a certain disease or accident to play chess and perform a social activity without the help of another person, and to be rehabilitated at the same time. It consists of three parts: Chess module, Human-computer interaction module and Artificial Intelligence module. 29 words have been determined to provide movement in the game on the platform. Voice recordings from 151 people, 86 men and 65 women, were used. Feature selection was made on 43790 voice recordings by using mel frequency cepstral coefficients (MFCC) and gammatone cepstral coefficients (GTCC) methods. The results obtained were classified using the traditional CNN model. The data obtained after using MFCC and GTCC methods were used as inputs in the CNN model. In addition, the data obtained by the two methods were combined and trained in the model. Depending on the methods used in the created model, 83% to 85.9% results were obtained. It was determined that the results obtained using the MFCC method were more successful.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信