提高可重构软cpu性能和资源利用率的设计技术

Alexander Wold, Dirk Koch, J. Tørresen
{"title":"提高可重构软cpu性能和资源利用率的设计技术","authors":"Alexander Wold, Dirk Koch, J. Tørresen","doi":"10.1109/DDECS.2012.6219024","DOIUrl":null,"url":null,"abstract":"Reconfigurable hardware allows application specific customization of soft microprocessors. Techniques such as removing unused instructions, software emulation of instructions, custom instruction set extensions, and run-time reconfigurable instructions have been suggested. However, the techniques have largely been studied separately from each other. The contribution of this paper is a classification method enabling integration of these techniques. This allows for generating an application specific microprocessor based system from a given program. The generated microprocessor is optimized with respect to performance per area. The improvement of our methodology is demonstrated for the CoreBench benchmark. The benefit of combining the removal of unused instructions (ISA subsetting) with software emulation of rarely used instructions is shown to increase performance while at the same time reducing resource requirements. Improvement in both area and performance is accomplished thorough simplifying the design allowing an increase in clock frequency for the synthesized soft CPU. Optimizing only by using custom instructions allowed a 12% increase in performance, but also increased resource usage by 6%. Software emulation combined with ISA subsetting allowed area savings of 7%, but only improved performance by 3%. By combining custom instructions, software emulation and ISA subsetting, we achieved an performance improvement of 15% while at the same time reducing resource requirements.","PeriodicalId":131623,"journal":{"name":"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Design techniques for increasing performance and resource utilization of reconfigurable soft CPUs\",\"authors\":\"Alexander Wold, Dirk Koch, J. Tørresen\",\"doi\":\"10.1109/DDECS.2012.6219024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconfigurable hardware allows application specific customization of soft microprocessors. Techniques such as removing unused instructions, software emulation of instructions, custom instruction set extensions, and run-time reconfigurable instructions have been suggested. However, the techniques have largely been studied separately from each other. The contribution of this paper is a classification method enabling integration of these techniques. This allows for generating an application specific microprocessor based system from a given program. The generated microprocessor is optimized with respect to performance per area. The improvement of our methodology is demonstrated for the CoreBench benchmark. The benefit of combining the removal of unused instructions (ISA subsetting) with software emulation of rarely used instructions is shown to increase performance while at the same time reducing resource requirements. Improvement in both area and performance is accomplished thorough simplifying the design allowing an increase in clock frequency for the synthesized soft CPU. Optimizing only by using custom instructions allowed a 12% increase in performance, but also increased resource usage by 6%. Software emulation combined with ISA subsetting allowed area savings of 7%, but only improved performance by 3%. By combining custom instructions, software emulation and ISA subsetting, we achieved an performance improvement of 15% while at the same time reducing resource requirements.\",\"PeriodicalId\":131623,\"journal\":{\"name\":\"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDECS.2012.6219024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 15th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDECS.2012.6219024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

可重构硬件允许特定于应用程序的软微处理器定制。建议使用诸如删除未使用的指令、软件仿真指令、自定义指令集扩展和运行时可重构指令等技术。然而,这些技术在很大程度上是彼此分开研究的。本文的贡献是一种能够集成这些技术的分类方法。这允许从给定的程序生成基于特定应用的微处理器的系统。生成的微处理器就每个区域的性能进行了优化。我们方法的改进在CoreBench基准测试中得到了证明。将删除未使用的指令(ISA子集)与很少使用的指令的软件仿真相结合的好处是可以提高性能,同时减少资源需求。面积和性能的改进是通过简化设计来实现的,允许增加合成软CPU的时钟频率。仅通过使用自定义指令进行优化可以使性能提高12%,但也使资源使用增加了6%。软件仿真结合ISA子集可以节省7%的面积,但仅提高3%的性能。通过结合定制指令、软件仿真和ISA子集,我们实现了15%的性能改进,同时减少了资源需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design techniques for increasing performance and resource utilization of reconfigurable soft CPUs
Reconfigurable hardware allows application specific customization of soft microprocessors. Techniques such as removing unused instructions, software emulation of instructions, custom instruction set extensions, and run-time reconfigurable instructions have been suggested. However, the techniques have largely been studied separately from each other. The contribution of this paper is a classification method enabling integration of these techniques. This allows for generating an application specific microprocessor based system from a given program. The generated microprocessor is optimized with respect to performance per area. The improvement of our methodology is demonstrated for the CoreBench benchmark. The benefit of combining the removal of unused instructions (ISA subsetting) with software emulation of rarely used instructions is shown to increase performance while at the same time reducing resource requirements. Improvement in both area and performance is accomplished thorough simplifying the design allowing an increase in clock frequency for the synthesized soft CPU. Optimizing only by using custom instructions allowed a 12% increase in performance, but also increased resource usage by 6%. Software emulation combined with ISA subsetting allowed area savings of 7%, but only improved performance by 3%. By combining custom instructions, software emulation and ISA subsetting, we achieved an performance improvement of 15% while at the same time reducing resource requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信