基于制造ATPG模式的自适应信号分析扫描链诊断

Yu Huang, Wu-Tung Cheng, Ruifeng Guo, Ting-Pu Tai, F. Kuo, Yuan-Shih Chen
{"title":"基于制造ATPG模式的自适应信号分析扫描链诊断","authors":"Yu Huang, Wu-Tung Cheng, Ruifeng Guo, Ting-Pu Tai, F. Kuo, Yuan-Shih Chen","doi":"10.1109/ATS.2009.36","DOIUrl":null,"url":null,"abstract":"In the past, software based scan chain defect diagnosis can be roughly classified into two categories (1) model-based algorithms, and (2) data-driven algorithms. In this paper we first analyze the advantages and disadvantages of each category of the chain diagnosis algorithms. Next, an adaptive signal profiling algorithm that can use manufacturing ATPG scan patterns is proposed for scan chain diagnosis. Finally, several case studies and their PFA results are presented to validate the accuracy and effectiveness of the proposed algorithm.","PeriodicalId":106283,"journal":{"name":"2009 Asian Test Symposium","volume":"269 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Scan Chain Diagnosis by Adaptive Signal Profiling with Manufacturing ATPG Patterns\",\"authors\":\"Yu Huang, Wu-Tung Cheng, Ruifeng Guo, Ting-Pu Tai, F. Kuo, Yuan-Shih Chen\",\"doi\":\"10.1109/ATS.2009.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the past, software based scan chain defect diagnosis can be roughly classified into two categories (1) model-based algorithms, and (2) data-driven algorithms. In this paper we first analyze the advantages and disadvantages of each category of the chain diagnosis algorithms. Next, an adaptive signal profiling algorithm that can use manufacturing ATPG scan patterns is proposed for scan chain diagnosis. Finally, several case studies and their PFA results are presented to validate the accuracy and effectiveness of the proposed algorithm.\",\"PeriodicalId\":106283,\"journal\":{\"name\":\"2009 Asian Test Symposium\",\"volume\":\"269 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Asian Test Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ATS.2009.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Asian Test Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ATS.2009.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

过去,基于软件的扫描链缺陷诊断大致可以分为两类(1)基于模型的算法和(2)数据驱动的算法。本文首先分析了各类链式诊断算法的优缺点。其次,提出了一种可以利用制造ATPG扫描模式进行扫描链诊断的自适应信号分析算法。最后,给出了几个实例及其PFA结果,验证了所提算法的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scan Chain Diagnosis by Adaptive Signal Profiling with Manufacturing ATPG Patterns
In the past, software based scan chain defect diagnosis can be roughly classified into two categories (1) model-based algorithms, and (2) data-driven algorithms. In this paper we first analyze the advantages and disadvantages of each category of the chain diagnosis algorithms. Next, an adaptive signal profiling algorithm that can use manufacturing ATPG scan patterns is proposed for scan chain diagnosis. Finally, several case studies and their PFA results are presented to validate the accuracy and effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信