使用LSTM网络识别印刷埃塞俄比亚文字

Direselign Addis, Chuan-Ming Liu, Van-Dai Ta
{"title":"使用LSTM网络识别印刷埃塞俄比亚文字","authors":"Direselign Addis, Chuan-Ming Liu, Van-Dai Ta","doi":"10.1109/ICSSE.2018.8519972","DOIUrl":null,"url":null,"abstract":"Bidirectional Long Short-Term Memory (LSTM) networks have brought tremendous results on many machine learning tasks including handwritten and machine printed character recognition systems. The Ethiopic script uses a large number of characters in the writing and existence of visually similar character, which results in a challenge for OCR development. In this paper, we present application of bidirectional LSTM neural networks to recognize machine printed Ethiopic scripts. To train and test the model, we collect text files from different source written in Amharic, Ge’ ez and Tigrigna language and generate 96,000 artificial text line images by applying different degradation techniques. Additionally, to test the model with real scanned documents, we use real 12 page scanned images from Tsenat book. Without using any language modeling and any other post-processing, LSTM networks attain an average character error rate of 2.12%, and this indicates the proposed network achieves a promising result.","PeriodicalId":431387,"journal":{"name":"2018 International Conference on System Science and Engineering (ICSSE)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Printed Ethiopic Script Recognition by Using LSTM Networks\",\"authors\":\"Direselign Addis, Chuan-Ming Liu, Van-Dai Ta\",\"doi\":\"10.1109/ICSSE.2018.8519972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bidirectional Long Short-Term Memory (LSTM) networks have brought tremendous results on many machine learning tasks including handwritten and machine printed character recognition systems. The Ethiopic script uses a large number of characters in the writing and existence of visually similar character, which results in a challenge for OCR development. In this paper, we present application of bidirectional LSTM neural networks to recognize machine printed Ethiopic scripts. To train and test the model, we collect text files from different source written in Amharic, Ge’ ez and Tigrigna language and generate 96,000 artificial text line images by applying different degradation techniques. Additionally, to test the model with real scanned documents, we use real 12 page scanned images from Tsenat book. Without using any language modeling and any other post-processing, LSTM networks attain an average character error rate of 2.12%, and this indicates the proposed network achieves a promising result.\",\"PeriodicalId\":431387,\"journal\":{\"name\":\"2018 International Conference on System Science and Engineering (ICSSE)\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on System Science and Engineering (ICSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSE.2018.8519972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE.2018.8519972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

双向长短期记忆(LSTM)网络在许多机器学习任务中取得了巨大的成果,包括手写和机器打印字符识别系统。埃塞俄比亚文字在书写中使用了大量的字符,并且存在视觉上相似的字符,这给OCR的发展带来了挑战。在本文中,我们提出了双向LSTM神经网络识别机器打印埃塞俄比亚文字的应用。为了训练和测试模型,我们收集了不同来源的阿姆哈拉语、Ge’ez语和Tigrigna语的文本文件,并通过应用不同的退化技术生成了96,000张人工文本线图像。此外,为了使用真实的扫描文档来测试模型,我们使用了来自Tsenat book的真实的12页扫描图像。在不使用任何语言建模和其他后处理的情况下,LSTM网络的平均字符错误率为2.12%,这表明所提出的网络取得了很好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Printed Ethiopic Script Recognition by Using LSTM Networks
Bidirectional Long Short-Term Memory (LSTM) networks have brought tremendous results on many machine learning tasks including handwritten and machine printed character recognition systems. The Ethiopic script uses a large number of characters in the writing and existence of visually similar character, which results in a challenge for OCR development. In this paper, we present application of bidirectional LSTM neural networks to recognize machine printed Ethiopic scripts. To train and test the model, we collect text files from different source written in Amharic, Ge’ ez and Tigrigna language and generate 96,000 artificial text line images by applying different degradation techniques. Additionally, to test the model with real scanned documents, we use real 12 page scanned images from Tsenat book. Without using any language modeling and any other post-processing, LSTM networks attain an average character error rate of 2.12%, and this indicates the proposed network achieves a promising result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信