并行化复杂非线性回归方法在大电位范围电化学阻抗数据中的应用

M. A. A. Kappel, R. Fabbri, R. Domingos, I. Bastos
{"title":"并行化复杂非线性回归方法在大电位范围电化学阻抗数据中的应用","authors":"M. A. A. Kappel, R. Fabbri, R. Domingos, I. Bastos","doi":"10.18605/2175-7275/CEREUS.V10N2P122-136","DOIUrl":null,"url":null,"abstract":"Electrochemical impedance spectroscopy (EIS) is a widely used technique in electrochemical systems characterization. Modeling this data is usually done using equivalent electrical circuits. These circuits have parameters that need to be fitted correctly, in order to enable the simulation of impedance data. Furthermore, the circuit fitting can be made for a wide potential range, allowing a characterization of the circuit elements evolution according to potential. At first, this work presents a sequential fitting methodology with high computational cost, using the optimization method Differential Evolution in each applied potential. The fitted parameters obtained for each potential step are used in the next, accelerating the fitting process and ensuring the smoothness necessary for the evolution of the circuit. Then, a parallelized algorithm is proposed for the problem, in order to reduce the fitting runtime, keeping the dependency relationship among applied potentials. Finally, results show that the parallelized algorithm is almost 50 times faster than the original and reaches the correct fitted values with the same accuracy.","PeriodicalId":208128,"journal":{"name":"Revista Cereus","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallelization of the Complex Nonlinear Regression procedure applied in electrochemical impedance data for a wide potential range\",\"authors\":\"M. A. A. Kappel, R. Fabbri, R. Domingos, I. Bastos\",\"doi\":\"10.18605/2175-7275/CEREUS.V10N2P122-136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrochemical impedance spectroscopy (EIS) is a widely used technique in electrochemical systems characterization. Modeling this data is usually done using equivalent electrical circuits. These circuits have parameters that need to be fitted correctly, in order to enable the simulation of impedance data. Furthermore, the circuit fitting can be made for a wide potential range, allowing a characterization of the circuit elements evolution according to potential. At first, this work presents a sequential fitting methodology with high computational cost, using the optimization method Differential Evolution in each applied potential. The fitted parameters obtained for each potential step are used in the next, accelerating the fitting process and ensuring the smoothness necessary for the evolution of the circuit. Then, a parallelized algorithm is proposed for the problem, in order to reduce the fitting runtime, keeping the dependency relationship among applied potentials. Finally, results show that the parallelized algorithm is almost 50 times faster than the original and reaches the correct fitted values with the same accuracy.\",\"PeriodicalId\":208128,\"journal\":{\"name\":\"Revista Cereus\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Cereus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18605/2175-7275/CEREUS.V10N2P122-136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Cereus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18605/2175-7275/CEREUS.V10N2P122-136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电化学阻抗谱(EIS)是一种广泛应用于电化学体系表征的技术。通常使用等效电路对这些数据进行建模。这些电路的参数需要正确拟合,以便能够模拟阻抗数据。此外,电路拟合可以用于宽电位范围,允许根据电位表征电路元件的演变。首先,本文提出了一种计算成本高的序列拟合方法,在每个应用势中使用微分进化优化方法。为每个潜在步骤获得的拟合参数用于下一个步骤,加速拟合过程并确保电路进化所需的平滑性。在此基础上,提出了一种并行化的拟合算法,以减少拟合运行时间,同时保持应用势之间的依赖关系。结果表明,并行化算法的拟合速度是原算法的近50倍,并能以相同的精度得到正确的拟合值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallelization of the Complex Nonlinear Regression procedure applied in electrochemical impedance data for a wide potential range
Electrochemical impedance spectroscopy (EIS) is a widely used technique in electrochemical systems characterization. Modeling this data is usually done using equivalent electrical circuits. These circuits have parameters that need to be fitted correctly, in order to enable the simulation of impedance data. Furthermore, the circuit fitting can be made for a wide potential range, allowing a characterization of the circuit elements evolution according to potential. At first, this work presents a sequential fitting methodology with high computational cost, using the optimization method Differential Evolution in each applied potential. The fitted parameters obtained for each potential step are used in the next, accelerating the fitting process and ensuring the smoothness necessary for the evolution of the circuit. Then, a parallelized algorithm is proposed for the problem, in order to reduce the fitting runtime, keeping the dependency relationship among applied potentials. Finally, results show that the parallelized algorithm is almost 50 times faster than the original and reaches the correct fitted values with the same accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信