遗传算法的排列建模

P. Krömer, J. Platoš, V. Snás̃el
{"title":"遗传算法的排列建模","authors":"P. Krömer, J. Platoš, V. Snás̃el","doi":"10.1109/SOCPAR.2009.31","DOIUrl":null,"url":null,"abstract":"Combinatorial optimization problems form a class of appealing theoretical and practical problems attractive for their complexity and known hardness. They are often NP-hard and as such not solvable by exact methods. Combinatorial optimization problems are subject to numerous heuristic and metaheuristic algorithms, including genetic algorithms. In this paper, we present two new permutation encodings for genetic algorithms and experimentally evaluate the influence of the encodings on the performance and result of genetic algorithm on two synthetic and real-world optimization problems.","PeriodicalId":284743,"journal":{"name":"2009 International Conference of Soft Computing and Pattern Recognition","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Modeling Permutations for Genetic Algorithms\",\"authors\":\"P. Krömer, J. Platoš, V. Snás̃el\",\"doi\":\"10.1109/SOCPAR.2009.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combinatorial optimization problems form a class of appealing theoretical and practical problems attractive for their complexity and known hardness. They are often NP-hard and as such not solvable by exact methods. Combinatorial optimization problems are subject to numerous heuristic and metaheuristic algorithms, including genetic algorithms. In this paper, we present two new permutation encodings for genetic algorithms and experimentally evaluate the influence of the encodings on the performance and result of genetic algorithm on two synthetic and real-world optimization problems.\",\"PeriodicalId\":284743,\"journal\":{\"name\":\"2009 International Conference of Soft Computing and Pattern Recognition\",\"volume\":\"203 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference of Soft Computing and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2009.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference of Soft Computing and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2009.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

组合优化问题是一类具有吸引力的理论和实践问题,因其复杂性和已知的硬度而具有吸引力。它们通常是np困难的,因此不能用精确的方法求解。组合优化问题涉及许多启发式和元启发式算法,包括遗传算法。本文提出了遗传算法的两种新的排列编码,并在两个合成优化问题和现实优化问题上实验评价了编码对遗传算法性能和结果的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Permutations for Genetic Algorithms
Combinatorial optimization problems form a class of appealing theoretical and practical problems attractive for their complexity and known hardness. They are often NP-hard and as such not solvable by exact methods. Combinatorial optimization problems are subject to numerous heuristic and metaheuristic algorithms, including genetic algorithms. In this paper, we present two new permutation encodings for genetic algorithms and experimentally evaluate the influence of the encodings on the performance and result of genetic algorithm on two synthetic and real-world optimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信