计算三维空间中复杂物体之间距离的快速程序

{"title":"计算三维空间中复杂物体之间距离的快速程序","authors":"","doi":"10.1109/56.2083","DOIUrl":null,"url":null,"abstract":"An algorithm for computing the Euclidean distance between a pair of convex sets in R/sup m/ is described. Extensive numerical experience with a broad family of polytopes in R/sup 3/ shows that the computational cost is approximately linear in the total number of vertices specifying the two polytopes. The algorithm has special features which makes its application in a variety of robotics problems attractive. These features are discussed and an example of collision detection is given. >","PeriodicalId":370047,"journal":{"name":"IEEE J. Robotics Autom.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1435","resultStr":"{\"title\":\"A fast procedure for computing the distance between complex objects in three-dimensional space\",\"authors\":\"\",\"doi\":\"10.1109/56.2083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm for computing the Euclidean distance between a pair of convex sets in R/sup m/ is described. Extensive numerical experience with a broad family of polytopes in R/sup 3/ shows that the computational cost is approximately linear in the total number of vertices specifying the two polytopes. The algorithm has special features which makes its application in a variety of robotics problems attractive. These features are discussed and an example of collision detection is given. >\",\"PeriodicalId\":370047,\"journal\":{\"name\":\"IEEE J. Robotics Autom.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1435\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE J. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/56.2083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/56.2083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1435

摘要

描述了一种计算R/sup m/中一对凸集之间欧氏距离的算法。在R/sup 3/中广泛的多面体族的大量数值经验表明,计算成本在指定两个多面体的顶点总数中近似线性。该算法具有独特的特点,使其在各种机器人问题中的应用具有吸引力。讨论了这些特征,并给出了一个碰撞检测的实例。>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast procedure for computing the distance between complex objects in three-dimensional space
An algorithm for computing the Euclidean distance between a pair of convex sets in R/sup m/ is described. Extensive numerical experience with a broad family of polytopes in R/sup 3/ shows that the computational cost is approximately linear in the total number of vertices specifying the two polytopes. The algorithm has special features which makes its application in a variety of robotics problems attractive. These features are discussed and an example of collision detection is given. >
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信